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A. – In this paper we prove a variety of results about the signature operator on Witt
spaces. First, we give a parametrix construction for the signature operator on any compact, oriented,
stratified pseudomanifold X which satisfies the Witt condition. This construction, which is inductive
over the ‘depth’ of the singularity, is then used to show that the signature operator is essentially self-
adjoint and has discrete spectrum of finite multiplicity, so that its index—the analytic signature of X-–
is well-defined. This provides an alternate approach to some well-known results due to Cheeger.
We then prove some new results. By coupling this parametrix construction to a C∗rΓ Mishchenko
bundle associated to any Galois covering of X with covering group Γ, we prove analogues of the
same analytic results, from which it follows that one may define an analytic signature index class as
an element of the K-theory of C∗rΓ. We go on to establish in this setting and for this class the full
range of conclusions which sometimes goes by the name of the signature package. In particular, we
prove a new and purely topological theorem, asserting the stratified homotopy invariance of the higher
signatures of X, defined through the homology L-class of X, whenever the rational assembly map
K∗(BΓ)⊗Q→ K∗(C

∗
rΓ)⊗Q is injective.

R. – Dans cet article nous prouvons plusieurs résultats pour l’opérateur de la signature sur
un espace de Witt X compact orienté quelconque. Nous construisons une paramétrix de l’opérateur
de la signature de X en raisonnant par récurrence sur la profondeur de X et en utilisant une analyse
très fine de l’opérateur normal (près d’une strate). Ceci nous permet de montrer que le domaine
maximal de l’opérateur de la signature est compactement inclus dans l’espace L2 correspondant. On
peut alors (re)démontrer que l’opérateur de la signature est essentiellement self-adjoint et a un spectre
L2 discret de multiplicité finie de sorte que son indice est bien défini. Nous donnons donc une nouvelle
démonstration de certains résultats dus à Jeff Cheeger. Nous considérons ensuite le cas où X est muni
d’un revêtement galoisien de groupe Γ. Nous utilisons alors nos constructions pour définir la classe
d’indice de signature analytique à valeurs dans le groupe de K-théorie K∗(C

∗
rΓ). Nous généralisons

dans cette situation singulière la plupart des résultats connus dans le cas où X est lisse. C’est ce
qu’on appelle le « forfait signature ». En particulier, nous prouvons un nouveau théorème, purement
topologique, qui permet de prouver l’invariance par homotopie stratifiée des hautes signatures de
X (définies à l’aide de la L−classe homologique de X) pourvu que l’application d’assemblement
rationnelle K∗(BΓ)⊗Q→ K∗(C

∗
rΓ)⊗Q soit injective.
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1. Introduction

LetX be an orientable closed compact Riemannian manifold with fundamental group Γ.
Let X ′ be a Galois Γ-covering and r : X → BΓ a classifying map for X ′. The signature
package for the pair (X, r :X → BΓ) refers to the following collection of results:

1. the signature operator with values in the Mishchenko bundle r∗EΓ ×Γ C
∗
rΓ defines a

signature index class Ind(ð̃sign) ∈ K∗(C∗rΓ), ∗ ≡ dimX (mod 2);
2. the signature index class is a bordism invariant; more precisely it defines a group

homomorphism ΩSO
∗ (BΓ)→ K∗(C

∗
rΓ);

3. the signature index class is a homotopy invariant;
4. there is a K-homology signature class [ðsign] ∈ K∗(X) whose Chern character is,

rationally, the Poincaré dual of the L-Class;
5. the assembly map β : K∗(BΓ)→ K∗(C

∗
rΓ) sends the class r∗[ðsign] into Ind(ð̃sign);

6. if the assembly map is rationally injective, one can deduce from (1) - (5) that the
Novikov higher signatures

{〈L(X) ∪ r∗α, [X]〉, α ∈ H∗(BΓ,Q)}

are homotopy invariant.

We call this list of results, together with the following item, the full signature package:
(7) there is a (C∗-algebraic) symmetric signature σC∗rΓ(X, r) ∈ K∗(C∗rΓ), which is topo-

logically defined, a bordism invariant σC∗rΓ : ΩSO
∗ (BΓ) → K∗(C

∗
rΓ) and, in addition,

is equal to the signature index class.
For history and background see [16] [51] and for a survey we refer to [30].
The main goal of this paper is to formulate and establish the signature package for a class of

stratified pseudomanifolds known as Witt spaces. In particular, we prove by analytic methods
a new and purely topological result concerning the stratified homotopy invariance of suitably
defined higher signatures under an injectivity assumption on the assembly map for the group Γ.

The origins of the signature package on a closed oriented manifold X can be traced back
to the Atiyah-Singer proof of the signature formula of Hirzebruch, σtop(X) = L(X) :=

〈L(X), [X]〉. In this proof the central object is the Fredholm index of the signature operator
which is proved to be simultaneously equal to the topological signature of the manifold
σtop(X) and to its L-genus L(X):

σtop(X) = ind(ðsign) = L(X) .

The idea of using index theory to investigate topological properties of X received new
impetus through the seminal work of Lusztig, who used the family index theorem of Atiyah-
Singer in order to establish the Novikov conjecture on the homotopy invariance of the higher
signatures ofX when π1(X) = Zk. Most of the signature package as formulated here can be
seen as a noncommutative version of the results of Lusztig. Crucial in the formulation and
proof of the signature package are the following issues:

– the Poincaré duality property for the (co)homology of X and more generally, the
Algebraic Poincaré Complex structure of its (co)chain complex;

– the possibility of defining bordism groups ΩSO(T ), T a topological space, with cycles
given by closed oriented manifolds endowed with a reference map to T ;
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THE SIGNATURE PACKAGE ON WITT SPACE 243

– an elliptic theory which allows one to establish the analytic properties of ðsign and then
connect them to the topological properties of X;

– the possibility of extending this elliptic theory to signature operators twisted by a bun-
dle of finitely generated projectiveA-modules, whereA is a C∗-algebra. The prototype
is the signature operator ð̃sign twisted by the Mishchenko bundle r∗EΓ×Γ C

∗
rΓ.

Once one moves from closed oriented manifold to stratified pseudomanifolds, many of
these issues need careful reformulation and substantially more care. First, it is well-known
that Poincaré duality fails on a general stratified pseudomanifold “X. Next, the bordism group
Ωpseudo(T ), the cycles of which are arbitrary stratified pseudomanifolds endowed with a
reference map to T , is not the right one; indeed, as explained in [4], the coefficients of such a
theory, Ωpseudo(point), are trivial. Finally, the analytic properties of the signature operator
on the regular part of a stratified pseudomanifold endowed with an ‘incomplete iterated edge
metric’ (which is a particularly simple and natural type of metric that can be constructed
on such a space) are much more delicate than in the closed case. In particular, this operator
may not even be essentially self-adjoint, and the possibility of numerous distinct self-adjoint
extensions complicates the possible connections to topology.

The first problem has been tackled by Goresky and MacPherson in the topological setting
[20] [21] and by Cheeger in the analytic setting [11] [12] (at least for the particular subclass
of stratified pseudomanifolds we consider below). The search for a cohomology theory on
such spaces with some vestiges of Poincaré duality led Goresky and MacPherson to their
discovery of intersection (co)homology groups, IH∗p (“X,Q), where p is a ‘perversity function’,
and to the existence of a perfect pairing

IH∗p (“X,Q)× IH∗q (“X,Q)→ Q

where p and q are complementary perversities. Notice that we still do not obtain a signature
unless the perversities can be chosen the same, i.e. unless there is a perfect pairing

IH∗m(“X,Q)× IH∗m(“X,Q)→ Q

for some perversity function m. Witt spaces constitute a subclass of stratified pseudomani-
folds for which all of these difficulties can be overcome.

A stratified pseudomanifold “X is a Witt space if any even-dimensional link L satisfies
IH

dimL/2
m (L,Q) = 0, where m is the upper-middle perversity function. Examples of Witt

spaces include any singular projective variety over C. We list some particularly interesting
properties of Witt spaces:

– the upper-middle and lower-middle perversity functions define the same intersection
cohomology groups, which are then denoted by IH∗m(“X);

– there is a perfect pairing

IH∗m(“X,Q)× IH∗m(“X,Q)→ Q ;

in particular, there is a well defined intersection cohomology signature;
– there are well-defined and nontrivial Witt bordism groups ΩWitt(T ) (for example, these

are rationally isomorphic to the connected version of KO-homology, ko(T )⊗Z Q);
– there is a class of Riemannian metrics on the regular part of “X for which

• the signature operator is essentially self-adjoint
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• its unique self-adjoint extension has discrete spectrum of finite multiplicity
• there is a de Rham-Hodge theorem, connecting the Hodge cohomology, the
L2-cohomology and the intersection cohomology IH∗m(“X,C).

The topological results here are due to Goresky-MacPherson and Siegel. The analytic results
are due initially to Cheeger, though there is much further work in this area, see, for example,
[9], [39], [27], [54]. Cheeger’s results on the signature operator are based on a careful analysis
of the heat kernel of the associated Laplacian.

We have a number of goals in this article:

– we give a new treatment of Cheeger’s result on the signature operator based on the
methods of geometric microlocal analysis;

– this approach is then adapted to the signature operator ð̃sign with value in the
Mishchenko bundle r∗EΓ×Γ C

∗
rΓ;

– we carefully analyze the resulting index class, with particular emphasis on its stability
property;

– we collect this analytic information and establish the whole range of results encom-
passed by the signature package on Witt spaces. In particular, we prove a Novikov con-
jecture on Witt spaces whenever the assembly map for the fundamental group is ratio-
nally injective. We note again that this is a new and purely topological result.

This article is divided into three parts. In the first one, we give a detailed account of
the resolution, through a series of blowups, of an arbitrary stratified pseudomanifold (not
necessarily satisfying the Witt condition) to a manifold with corners. This has been studied
in the past, most notably by Verona [59]; the novelty in our treatment is the introduction of
iterated fibration structures, a notion due to Melrose, as an extra structure on the boundary
faces of the resolved manifold with corners. We also show that a manifold with corners
with an iterated fibration structure can be blown down to a stratified pseudomanifold. In
other words, the classes of stratified pseudomanifolds and of manifolds with corners with
iterated fibration structure are equivalent. Much of this material is based on unpublished
work by Richard Melrose, and we are grateful to him for letting us use and develop these
ideas here. We then describe the (incomplete) iterated edge metrics, which are the simplest
type of incomplete metrics adapted to this class of singular space. We show in particular
that the space of such metrics is nonempty and path-connected. We also consider, for any
such metric, certain conformally related complete, and ‘partially complete’ metrics used in
the ensuing analysis.

The second part of this article focuses on the analysis of natural elliptic operators, specif-
ically, the de Rham and signature operators, associated to incomplete iterated edge metrics.
Our methods are drawn from geometric microlocal analysis. Indeed, in the case of simply
stratified spaces, with only one singular stratum, there is a very detailed pseudodifferential
theory [41] which can be used for problems of this type, and in the even simpler case of man-
ifolds with isolated conic singularities, one may use the somewhat simpler b-calculus of Mel-
rose, see [44]. In either of these cases, a crucial step is to consider the de Rham or signature
operator associated to an incomplete edge or conic metric as a singular factor multiplying
an elliptic operator in the edge or b-calculus, and then to study this latter, auxiliary, operator
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using methods adapted to the geometry of an associated complete metric g̃ on the interior
of the resolved space ‹X.

This idea was employed by Gil and Mendoza [19] in the conic case, where ‹X is a manifold
with boundary and g̃ is a b-(or asymptotically cylindrical) metric, and also by Hunsicker and
Mazzeo [27], for Witt spaces with simple edge singularities. We sketch this transformation
briefly in these two cases.

First suppose that (“X, g) is a space with isolated conic singularity. Then we can write
ðsign = r−1D, where D is an elliptic differential b-operator of order 1; in local coordinates
r ≥ 0 and z on F (so F = ∂‹X),

(1.1) D = A(r, z) (r∂r + ðsign,F ) .

The second term on the right is the signature operator on the link F . Thus D defines a
b-operator on ‹X. Mapping properties of the signature operator and regularity properties for
solutions of ðsignu = 0 are consequences of the corresponding properties for D, which can
be studied using the calculus of pseudodifferential b-operators.

Next, suppose that “X has a simple edge singularity; then ‹X is a manifold with fibered
boundary and g̃ = r−2g is a complete edge metric, where r is the distance to the singular
stratum in (“X, g). Here too, ðsign = r−1DwhereD is an elliptic edge operator. Locally, using
coordinates (r, y, z), where r is as above (hence is the radial variable in the cone fibres), and
z ∈ F and y are coordinates on the edge, we have

(1.2) D = A(r, y, z)
Ä
r∂r +

∑
Bi(r, y, z)r∂yi + ðsign,F

ä
.

Thus D is an elliptic differential edge operator on ‹X in the sense of [41], and the pseudodif-
ferential edge calculus from that paper can be used to obtain all necessary properties of ðsign.

One of the main elements in the b-and edge calculi is the use of model operators associated
to an operator such as D. In the b-calculus, D is modeled near the cone point by its indicial
operator; in the edge calculus, D has two models: its indicial operator and its normal opera-
tor. The latter captures the tangential behavior ofD along the edge, as well as its asymptotic
behavior in the r and z directions. Their mapping properties, as determined by the construc-
tion of inverses for them, are key in understanding the analytic properties of D and hence
of ðsign.

For iterated edge spaces, we proceed in a fairly similar way, using an inductive pro-
cedure. Let (“X, g) be an iterated edge space and Y a stratum of maximal depth, so that
Y is a compact smooth manifold without boundary and some neighborhood of Y in “X
is a cone bundle over Y with each fibre a cone over a compact space F . If this maxi-
mal depth is greater than one, then F is an iterated edge space with depth one less than
that of “X. If r is the radial coordinate in this cone bundle, then ðsign = r−1D where
D = A(r, y, z) (r∂r +

∑
Bi(r, y, z)r∂yi + ðsign,F ). Here ðsign,F is the signature operator

on F , and is an iterated edge operator. The gain is that since F is one step ‘simpler’ than“X, by induction we can assume that the analytic properties of ðsign,F are already known,
and from these we deduce the corresponding properties for ðsign on “X. Notice that we are
conformally rescaling in only the ‘final’ radial variable and appealing to the geometry of the
partially complete metric r−2g on the complement of Y in “X.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



246 P. ALBIN, É. LEICHTNAM, R. MAZZEO AND P. PIAZZA

Ideally, at this stage we could appeal to a complete pseudodifferential calculus adapted to
this iterated edge geometry. Such a calculus does not yet exist, but we can take a shorter route
for the problems at hand. Rather than developing all aspects of this pseudodifferential theory
at each step of this induction, we develop only certain parts of the Fredholm and regularity
theory for the signature operator, and phrase these in terms of a priori estimates rather than
the sharp structure of the Schwartz kernel of a parametrix for it. By establishing the correct
set of estimates at each stage of the induction, we can prove the corresponding estimates for
spaces of one greater depth. This involves analyzing the normal and indicial operators of the
partial completion of ðsign, and uses the Witt hypothesis in a crucial way.

As noted earlier, an important feature of this approach is that it carries over directly when
ðsign is coupled to aC∗ bundle. Hence the main theorem in the higher setting can be deduced
with little extra effort from the techniques used for the ordinary case. This is a key motivation
for developing a geometric microlocal approach to replace the earlier successful methods of
Cheeger. The fact that such techniques are well suited to this higher setting has already played
a role, for example, on manifolds with boundary, cf. the work of Leichtnam, Lott and Piazza
[34] on the Novikov conjecture on manifolds with boundary and the survey [37].

This leads eventually to our main analytic and topological theorems:

T 1.1. – Let “X be any smoothly stratified pseudomanifold satisfying the Witt
hypothesis. Let g be any adapted Riemannian metric on the regular part of “X. Denote by
ð = d + δ either the Hodge-de Rham operator ðdR or the signature operator ðsign associated
to g. Then:

1) As an unbounded operator on C∞c (X, iieΛ∗(X)) ⊂ L2
iie(X; iieΛ∗(X)), ð has a unique

closed extension, hence is essentially self-adjoint.
2) For any ε > 0, the domain of this unique closed extension, still denoted ð, is contained in

ρ1−εL2
iie(X; iieΛ∗(X)) ∩H1

loc(X; iieΛ∗(X))

which is compactly included in L2
iie(X; iieΛ∗(X)).

3) As an operator on its maximal domain endowed with the graph norm, ð is Fredholm.
4) ð has discrete spectrum of finite multiplicity.

Items 1), 3) and 4) have been proved by Cheeger [13] (using the heat-kernel) for metrics
quasi-isometric to a piecewise flat one.

T 1.2. – There is a well defined signature class [ðsign] ∈ K∗(“X), ∗ = dim “X
(mod 2), which is independent of the choice of the adapted metric on the regular part of “X.
When dimX is even, the index of the signature operator is well-defined.

If “X ′ → “X is a Galois covering with group Γ and r : “X → BΓ is the classifying map,
then the signature operator ð̃sign with coefficients in the Mishchenko bundle, together with the
C∗rΓ-Hilbert module L2

iie,Γ(X; iieΛ∗ΓX) define an unbounded Kasparov (C, C∗rΓ)-bimodule and
hence a class inKK∗(C, C∗rΓ) =K∗(C

∗
rΓ), which we call the index class associated to ð̃sign and

denote by Ind(ð̃sign) ∈ K∗(C∗rΓ). If [[ðsign]] ∈ KK∗(C(“X)⊗C∗rΓ, C∗rΓ) is the class obtained
from [ðsign] ∈ KK∗(C(“X),C) by tensoring withC∗rΓ, then Ind(ð̃sign) is equal to the Kasparov
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product of the class defined by the Mishchenko bundle [›C∗rΓ] ∈ KK0(C, C(“X) ⊗ C∗rΓ) with
[[ðsign]]:

(1.3) Ind(ð̃sign) = [›C∗rΓ]⊗ [[ðsign]] .

In particular, the index class Ind(ð̃sign) does not depend on the choice of the adapted metric
on the regular part of “X. Finally, if β : K∗(BΓ) → K∗(C

∗
rΓ) denotes the assembly map in

K-theory, then

(1.4) β(r∗[ðsign]) = Ind(ð̃sign) in K∗(C∗rΓ).

These theorems establish property 1), the first part of property 4) and property 5) of the
signature package on Witt spaces. The rest of the signature package is proved in the third
part of this paper.

The Witt bordism invariance of the signature index class Ind(ð̃sign) inK∗(C∗rΓ) is proved
using KK-techniques, just as in the closed case.

The proof that Ind(ð̃sign) ∈ K∗(C∗rΓ) is a stratified homotopy invariant is more difficult.
In Section 9 we follow the strategy of Hilsum and Skandalis, but encounter extra complica-
tions caused by the singular structure of “X. To deal with these we use the interplay between
the compact singular space “X with its incomplete metric and its resolution ‹X with the con-
formally related complete metric.

The equality of the Chern character of the signature K-homology class [ðsign] ∈ K∗(“X)

with the homology L-class L∗(“X) had already been proved by Moscovici and Wu using
Cheeger’s methods, and we simply quote their result. The stratified homotopy invariance of
the higher signatures, defined as the collection of numbers

{〈α, r∗(L∗(“X))〉 , α ∈ H∗(BΓ,Q)},

is proved in Section 10 under the hypothesis that the assembly map β is rationally injec-
tive. Finally, in Section 11 we prove the (rational) equality of our index class Ind(ð̃sign)

in K∗(C
∗
rΓ) with the C∗rΓ-symmetric signature σWitt

C∗rΓ (“X) obtained from the one recently

defined by Banagl in L∗(QΓ). The Witt-bordism invariance of Ind(ð̃sign) and σWitt
C∗rΓ (“X)

plays a fundamental role in the proof of this last item in the signature package.
In the brief final section, we explain where the proof of each item in the signature package

may be found in this paper.
Finally, we remark that since the appearance of this paper another approach to the

stratified homotopy invariance of the symmetric signature of a Witt space has appeared [18].
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2. Stratified spaces and resolution of singularities

This section describes the class of smoothly stratified pseudomanifolds. We first recall the
notion of a stratified space with ‘control data’; this is a topological space which decomposes
into a union of smooth strata, each with a specified tubular neighborhood with fixed product
decomposition, all satisfying several basic axioms. This material is taken from the paper of
Brasselet-Hector-Saralegi [7], but see Verona [59] and Pflaum [49] for more detailed exposi-
tions. We also refer the reader to [40], [26], [4] and [31]. Definitions are not entirely consistent
across those sources, so one purpose of reviewing this material is to specify the precise defini-
tions used here. A second goal here is to prove the equivalence of this class of smoothly strati-
fied pseudomanifolds and of the class of manifolds with corners with iterated fibration struc-
tures, as introduced by Melrose. The correspondence between elements in these two classes is
by blowup (resolution) and blowdown, respectively. We introduce the latter class in §2.2 and
show that any manifold with corners with iterated fibration structure can be blown down to a
smoothly stratified pseudomanifold. The converse, that any smoothly stratified pseudoman-
ifold can be blown up, or resolved, to obtain a manifold with corners with iterated fibration
structure, is proved in §2.3; this resolution was already defined by Brasselet et al. [7], cf. also
Verona [59], though those authors did not phrase it in terms of the fibration structures on the
boundaries of the resolution. The proper definition of isomorphism between these spaces is
subtle; we discuss this and propose a suitable definition, phrased in terms of this resolution,
in §2.4. This alternate description of smoothly stratified pseudomanifolds also helps to elu-
cidate certain notions such as the natural classes of structure vector fields, metrics, etc.

2.1. Smoothly stratified spaces

D 1. – A stratified space X is a metrizable, locally compact, second countable
space which admits a locally finite decomposition into a union of locally closed strataS = {Yα},
where each Yα is a smooth (usually open) manifold, with dimension depending on the index α.
We assume the following:

i) If Yα, Yβ ∈ S and Yα ∩ Yβ 6= ∅, then Yα ⊂ Yβ .
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ii) Each stratum Y is endowed with a set of ‘control data’ TY , πY and ρY ; here TY is a
neighborhood of Y in X which retracts onto Y , πY : TY −→ Y is a fixed continuous
retraction and ρY : TY → [0, 2) is a proper ‘radial function’ in this tubular neighborhood
such that ρ−1

Y (0) = Y . Furthermore, we require that if Z ∈ S and Z ∩ TY 6= ∅, then

(πY , ρY ) : TY ∩ Z −→ Y × [0, 2)

is a proper differentiable submersion.
iii) IfW,Y,Z ∈ S, and if p ∈ TY ∩TZ ∩W and πZ(p) ∈ TY ∩Z, then πY (πZ(p)) = πY (p)

and ρY (πZ(p)) = ρY (p).
iv) If Y,Z ∈ S, then

Y ∩ Z 6= ∅⇔ TY ∩ Z 6= ∅,
TY ∩ TZ 6= ∅⇔ Y ⊂ Z, Y = Z or Z ⊂ Y .

v) For each Y ∈ S, the restriction πY : TY → Y is a locally trivial fibration with fibre
the cone C(LY ) over some other stratified space LY (called the link over Y ), with atlas
UY = {(φ, U)}where eachφ is a trivialization π−1

Y ( U)→ U×C(LY ), and the transition
functions are stratified isomorphisms (in the sense of Definition 4 below) ofC(LY ) which
preserve the rays of each conic fibre as well as the radial variable ρY itself, hence are
suspensions of isomorphisms of each linkLY which vary smoothly with the variable y ∈ U.

If in addition we let Xj be the union of all strata of dimensions less than or equal to j, and
require that

vi) X = Xn ⊇ Xn−1 = Xn−2 ⊇ Xn−3 ⊇ · · · ⊇ X0 and X \Xn−2 is dense in X

then we say that X is a stratified pseudomanifold.

Some of these conditions require elaboration:
• The depth of a stratum Y is the largest integer k such that there is a chain of strata

Y = Yk, . . . , Y0 with Yj ⊂ Yj−1 for 1 ≤ j ≤ k. A stratum of maximal depth is always
a closed manifold. The maximal depth of any stratum in X is called the depth of X as a
stratified space. (Note that this is the opposite convention of depth from that in [7].)

We refer to the dense open stratum of a stratified pseudomanifold “X as its regular set, and
the union of all other strata as the singular set,

reg(“X) := “X \ sing(“X), where sing(“X) =
⋃
Y∈S

depthY>0

Y.

• If X and X ′ are two stratified spaces, a stratified isomorphism between them is a
homeomorphism F : X → X ′ which carries the open strata of X to the open strata of X ′

diffeomorphically, and such that π′F (Y )) ◦ F = F ◦ πY , ρ′Y = ρF (Y ) ◦ F for all Y ∈ S(X).
(We shall discuss this in more detail below.)
• If Z is any stratified space, then the cone over Z, denoted C(Z), is the space Z × R+

with Z×{0} collapsed to a point. This is a new stratified space, with depth one greater than
Z itself. The vertex 0 := Z × {0}/ ∼ is the only maximal depth stratum; π0 is the natural
retraction onto the vertex and ρ0 is the radial function of the cone.
• There is a small generalization of the coning construction. For any Y ∈ S, let

SY = ρ−1
Y (1). This is the total space of a fibration πY : SY → Y with fibre LY . Define
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the mapping cylinder over SY by Cyl (SY , πY ) = SY × [0, 2) / ∼ where (c, 0) ∼ (c′, 0) if
πY (c) = πY (c′). The equivalence class of a point (c, t) is sometimes denoted [c, t], though
we often just write (c, t) for simplicity. Then there is a stratified isomorphism

FY : Cyl (SY , πY ) −→ TY ;

this is defined in the canonical way on each local trivialization U × C(LY ) and since the
transition maps in axiom v) respect this definition, FY is well-defined.
• Finally, suppose that Z is any other stratum of X with TY ∩ Z 6= ∅, so by axiom iv),

Y ⊂ Z. Then SY ∩ Z is a stratum of SY .
We have been brief here since these axioms are described more carefully in the references

cited above. Axiom v) is sometimes considered to be a consequence of the other axioms. In
the topological category (where the local trivializations of the tubular neighborhoods are
only required to be homeomorphisms) this is true, but the situation is less clear for smoothly
stratified spaces, so we prefer to leave this axiom explicit. Let us direct the reader to [40] and
[26] for more on this.

We elaborate further on the definition of stratified isomorphism. This definition is strictly
determined by the control data on the domain and range, i.e. by the condition that F
preserves the product decomposition of each tubular neighborhood. It is nontrivial to prove
that the same space X endowed with two different sets of control data is isomorphic in
this sense. There are other even more rigid definitions of isomorphism in the literature.
The one in [49] requires that the spaces X and X ′ are differentiably embedded into some
ambient Euclidean space, and that the map F locally extends to a diffeomorphism of these
ambient spaces. For example, let X be a union of three copies of the half-plane R × R+,
as follows. The first and second ones are embedded as {(x, y, z) : z = 0, y ≥ 0} and
{(x, y, z) : y = 0, z ≥ 0}, while the third is given by {(x, y, z) : y = r cosα(x),

z = r sinα(x), r ≥ 0} where α : R → (0, π/2) is smooth. In other words, this last sheet
is the union of a smoothly varying family of rays orthogonal to the x-axis, with slope α(x) at
each slice. Requiring a stratified isomorphism to extend to a diffeomorphism of the ambient
R3 would make these spaces for different functions α(x) inequivalent. We propose a different
definition below which has various advantages over either of the ones above.

2.2. Iterated fibration structures

The definition of an iterated fibration structure was proposed by Melrose in the late ’90’s
as the boundary fibration structure in the sense of [43] associated to the resolution of an
iterated edge space (what we are calling a smoothly stratified space). It has not appeared
in the literature previously (though we can now refer to [1], which was finished after the
present paper), and we are grateful to him for allowing us to present it here. The passage to
this resolution is necessary in order to apply the methods of geometric microlocal analysis.
A calculus of pseudodifferential iterated edge operators, when it is eventually written down
fully, will yield direct proofs of most of the analytic facts in later sections of this paper.

Let ‹X be a manifold of dimension n with corners up to codimension k. This means that
any point p ∈ ‹X has a neighborhood U 3 p which is diffeomorphic to a neighbourhood of
the origin V in the orthant (R+)`×Rn−` for some ` ≤ k, with pmapped to the origin. There
are induced local coordinates (x1, . . . , x`, y1, . . . , yn−`), where each xi ≥ 0 and yj ∈ (−ε, ε).
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There is an obvious decomposition ofX into its interior and the union of its boundary faces
of various codimensions. We make the additional global assumption that each face is itself
an embedded manifold with corners in ‹X, or in other words, that no boundary face intersects
itself.

We shall frequently encounter fibrations f : ‹X → ‹X ′ between manifolds with corners. By
definition, a map f is a fibration in this setting if it satisfies the following three properties: f is
a ‘b-map’, which means that if ρ′ is any boundary defining function in ‹X ′, then f∗(ρ′) is a
product of boundary defining functions of ‹X multiplied by a smooth nonvanishing function;
next, each q ∈ ‹X ′ has a neighborhood U such that f−1( U) is diffeomorphic to U × F

where the fibre F is again a manifold with corners; finally, we require that each fibre F
be a ‘p-submanifold’ in ‹X, which means that in terms of an appropriate adapted corner
coordinate system (x, y) ∈ (R+)`×Rn−`, as above, each F is defined by setting some subset
of these coordinates equal to 0.

The collection of boundary faces of codimension one play a special role, and is denoted
H = {Hα}α∈A for some index set A. Each boundary face G is the intersection of some
collection of boundary hypersurfaces, G = Hα1 ∩ · · · ∩ Hα` , which we often write as HA′

where A′ = {α1, . . . , α`} ⊂ A.

D 2 (Melrose). – An iterated fibration structure on the manifold with corners ‹X
consists of the following data:

a) Each Hα is the total space of a fibration fα : Hα → Bα, where both the fibre Fα and
base Bα are themselves manifolds with corners.

b) If two boundary hypersurfaces meet, i.e.Hαβ := Hα ∩Hβ 6= ∅, then dimFα 6= dimFβ .
c) If Hαβ 6= ∅ as in b), and dimFα < dimFβ , then the fibration of Hα restricts naturally

toHαβ (i.e. the leaves of the fibration ofHα which intersect the corner lie entirely within
the corner) to give a fibration ofHαβ with fibres Fα, whereas the larger fibres Fβ must be
transverse to Hα at Hαβ . Writing ∂αFβ for the boundaries of these fibres at the corner,
i.e. ∂αFβ := Fβ ∩Hαβ , then Hαβ is also the total space of a fibration with fibres ∂αFβ .
Finally, we assume that the fibres Fα at this corner are all contained in the fibres ∂αFβ ,
and in fact that each fibre ∂αFβ is the total space of a fibration with fibres Fα.

Two spaces ‹X and ‹X ′ with iterated fibration structures are isomorphic precisely when there
exists a diffeomorphism Φ between these manifolds with corners which preserves all of the
fibration structures at all boundary faces.

The index set A has a partial ordering: the ordered chains α1 < · · · < αr in A are in
bijective correspondence with the corners HA′ := Hα1

∩ · · · ∩ Hαr , A′ = {α1, . . . , αr},
where by definition αi < αj if dimFαi < dimFαj . In particular, α < β implies
Hα ∩ Hβ 6= ∅. We say that Hα has depth r if the longest chain β1 < β2 < · · · < βr
in A with maximal element βr = α has length r. The depth of a manifold with corners
with iteration fibration structure is the maximal depth of any of its boundary hypersur-
faces, equivalently, the maximal codimension of any of its corners. The precise relationships
between the induced fibrations on each corner are not easy to describe in general, but these
do not play a role here.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



252 P. ALBIN, É. LEICHTNAM, R. MAZZEO AND P. PIAZZA

L 2.1. – If α < β, then the boundary of each fibre Fα ⊂ Hα is disjoint from the
interior ofHαβ . Furthermore, the restriction of fα toHαβ has image lying within ∂Bα, whereas
the restriction of fβ to Hαβ has image intersecting the interior of Bβ . In particular, if α and β
are, respectively, minimal and maximal elements in A, then the fibres Fα and the base Bβ are
closed manifolds without boundary.

Proof. – Choose adapted local coordinates (xα, xβ , y1, . . . , yn−2) inHαβ which simulta-
neously straighten out these fibrations. Thus (xβ , y) are coordinates on Hα = {xα = 0},
and there is a splitting y = (y′, y′′) so that (xβ , y

′, y′′) 7→ (xβ , y
′′) represents the fibration

Hα → Bα. By part c) of the definition, since dimFα < dimFβ , there is a further decompo-
sition y′′ = (y′′1 , y

′′
2 ) so that the fibration of Hαβ with fibres ∂αFβ is represented by y 7→ y′′2 .

Thus (xβ , y
′′) and y′ are local coordinates on Bα and each Fα, and y′′2 and (xα, y

′, y′′1 ) are
local coordinates onBβ and each Fβ , respectively. All the assertions are direct consequences
of this.

Unlike for smoothly stratified spaces, the structure of control data has not been incorpo-
rated into this definition of iterated fibration structures, because its existence and uniqueness
can be inferred from standard facts in differential topology. Nonetheless, these data are still
useful, and we discuss them now.

D 3. – Let ‹X be a manifold with corners with an iterated fibration structure. Then
a control data set for ‹X consists of a collection of triples {T̃H , , π̃H , ρ̃H}, one for eachH ∈ H ,
where T̃H is a collar neighborhood of the hypersurface H, ρ̃H is a defining function for H and
π̃H is a diffeomorphism from each slice ρ̃H = const. to H. Thus the pair (π̃H , ρ̃H) gives a
diffeomorphism T̃H → H × [0, 2), and hence an extension of the fibration of H to all of T̃H .
These data are required to satisfy the following additional properties: for any hypersurface H ′

which intersects H with H ′ < H, the restriction of ρ̃H to H ′ ∩ T̃H is constant on the fibres
of H ′; finally, near any corner HA′ , A′ = {α1, . . . , αr}, the extension of the set of fibrations
of HA′ induced by the product decomposition

(π̃Hαj , ρ̃Hαj )
∣∣∣
αj∈A′

:
r⋂
j=1

T̃Hαj
∼= HA′ × [0, 2)r

preserves all incidence and inclusion relationships between the various fibres.

The existence of control data for an iterated fibration structure on a manifold with corners‹X is discussed in [1, Proposition 3.7], so we make only a few remarks here. We can find some
set of control data by successively choosing the maps π̃H and defining functions ρ̃H in order
of increasing depth, at each step making sure to respect the compatibility relationships with
all previous hypersurfaces. The uniqueness up to diffeomorphism can be established in much
the same way, based on the fact that there is a unique product decomposition of a collar
neighborhood of any H up to diffeomorphism.

P 2.2. – Let ‹X be a manifold with corners with iterated fibration structure,
and suppose that {π̃H , ρ̃H} and {π̃′H , ρ̃′H} are two sets of control data on it. Then there is a
diffeomorphism f̃ of ‹X which preserves the iterated fibration structure, and which intertwines
the two sets of control data.
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The key idea in the proof is that we can pull back any set of control data on ‹X to a ‘univer-
sal’ set of control data defined on the union of the inward pointing normal bundles to each
boundary hypersurface which satisfies the obvious set of compatibility conditions. The fact
that any two such sets of ‘pre-control data’ are equivalent can then be deduced inductively
using standard results about uniqueness up to diffeomorphism of collar neighborhoods of
these boundary hypersurfaces.

Finally, note that if ‹X has an iterated fibration structure, then any corner HA′ inher-
its such a structure too (we forget about the fibration of its interior), with depth equal
to k − codimHA′ .

P 2.3. – If ‹X is a compact manifold with corners with an iterated fibration
structure, then there is a smoothly stratified space “X obtained from ‹X by a process of successively
blowing down the connected components of the fibres of each hypersurface boundary of ‹X in
order of increasing fibre dimension (or equivalently, of increasing depth). The corresponding
blowdown map will be denoted β : ‹X → “X.

Proof. – We warm up to the general case by first considering what happens when ‹X is a
manifold with boundary, so ∂‹X is the total space of a fibration with fibre F and base space
Y and both F and Y are closed manifolds. Choose a boundary defining function ρ and fix a
product decomposition ∂‹X × [0, 2) of the collar neighborhood U = {ρ < 2}. This defines a
retraction π̃ : U → ∂X, as well as a fibration of U over ∂‹X with fibre π̃−1(F ) = F × [0, 2).
Now collapse each fibre F at x = 0 to a point. This commutes with the restriction to each
F×[0, 2), so we obtain a bundle of conesC(F ) over Y . We call this space the blowdown of ‹X
along the fibration, and write it asX/F . Denote by TY the image of U under this blowdown.
The map π̃ induces a retraction map π( U) = TY → Y , and ρ also descends to TY . Thus
{TY , π, ρ} are the control data for the singular stratum Y , and it is easy to check that these
satisfy all of the axioms in §2.1, hence X/F is a smoothly stratified space.

Now turn to the general case, which is proved by induction on the depth. As in the next
subsection, where we follow an argument from [7] and show how to blow up a smoothly strat-
ified space, we use a ‘doubling construction’ to stay within the class of stratified pseudoman-
ifolds while applying the inductive hypothesis to reduce the complexity of the problem. To
set this up, beginning with ‹X, a manifold with corners with iterated fibration structure of
depth k, forms a new manifold with corners and iterated fibration structure of depth k − 1

by simultaneously doubling ‹X across all of its maximal depth hypersurfaces. In other words,
consider ‹X ′ =

Ä
(‹X ×−1) t (‹X ×+1)

ä
/ ∼

where (p,−1) ∼ (q,+1) if and only if p = q ∈ H ∈ H where depth (H) = k. By standard
arguments in differential topology, one can give ‹X ′ the structure of a manifold with corners
up to codimension k − 1. If Hj ∈ H is any face with depth j < k which intersects a face
Hk of depth k, then as in Lemma 2.1, the boundaries of the fibres Fj ⊂ Hj only meet the
corners Hij for i < j, and do not meet the interior of Hjk. In terms of the local coordinates
(xj , xk, y) in that lemma, we simply let xk vary in (−ε, ε) rather than just [0, ε), and it is clear
how to extend the fibrations accordingly.
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The dimensional comparisons and inclusion relations at all other corners remain
unchanged. Therefore, ‹X ′ has an iterated fibration structure. This new space also car-
ries a smooth involution which has fixed point set the union of all depth k faces, where the
two copies of ‹X are joined, as well as a function ρk which is positive on one copy of ‹X,
negative on the other, and which vanishes simply on the interface between the two copies
of ‹X. For simplicity, assume that there is only one depth k face, Hk. We can also choose ρ̃k
so that it is constant on the fibres of all other boundary faces, and a retraction π̃k defined
on the set |ρ̃k| < 2 onto Hk.

Now apply the inductive hypothesis to blow down the boundary hypersurfaces of ‹X ′ in
order of increasing fibre dimension to obtain a smoothly stratified space “X ′ of depth k − 1.
The function ρk descends to a function (to which we give the same name) on this space.
Consider the open set “X+ := “X ′ ∩ {ρk > 0}, and also ∂k“X := “X ′ ∩ {ρk = 0}. Both of
these are smoothly stratified spaces; for the former this is because (in the language of [7])
we are restricting to a ‘saturated’ open set of “X ′, though we do not need to appeal to this
terminology since the assertion is clear, whereas for the latter it follows by induction since it
is the blowdown ofHk, which has depth less than k. This space ∂k“X, which we denote by ”Hk

is the total space of a fibration induced from the fibration of the face Hk in ‹X. By Lemma
2.1, since theHk are maximal, the baseBk has no boundary, and the fibres ‹Fk are manifolds
with corners with iterated fibration structures of depth less than k.

Hence after the blowdown, the base of the fibration of ∂k“X is still Bk while the fibres
are the blowdowns “Fk of the spaces ‹Fk, which are again well defined by induction. Finally,
using the product decomposition of a neighborhood of Hk in ‹X, collapsing the fibres of Hk

identifies the blowdown of this neighborhood with the mapping cylinder for the fibration
of ∂k“X. This produces the final space “X.

It suffices to check that the stratification of “X satisfies the axioms of a smoothly strati-
fied space only near where this final blowdown takes place, since the inductive hypothesis
guarantees that they hold elsewhere. These axioms are not difficult to verify from the local
description of ‹X in a product neighborhood of Hk.

R 2.4. – There is a subtlety in this result since there is typically more than one
smoothly stratified space “X which may be obtained by blowing down a manifold with corners‹X with iterated fibration structure. More specifically, there is a minimal blowdown, which
associates to each connected hypersurface boundary of ‹X a stratum of the blowdown “X.
However, it may occur that two strata of “X of highest depth, for example, are diffeomorphic,
and after identifying these strata we obtain a new smoothly stratified space. It may not be easy
to quantify the full extent of nonuniqueness, but we do not attempt (nor need) this here.

2.3. The resolution of a smoothly stratified space

The other part of this description of the differential topology of smoothly stratified spaces
is the resolution process: namely, conversely to the blowdown construction above, if “X is
any smoothly stratified space, one may resolve its singularities by successively blowing up its
strata in order of decreasing depth to obtain a manifold with corners ‹X with iterated fibration
structure. Following Remark 2.4, two different smoothly stratified spaces “X1, “X2 may resolve
to the same manifold with corners ‹X.
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P 2.5. – Let “X be a smoothly stratified pseudomanifold. Then there exists a
manifold with corners ‹X with an iterated fibration structure, and a blowdown map β : ‹X → “X
which has the following properties:

– there is a bijective correspondence Y ↔ ‹XY between the strata Y ∈ S of “X and the
(possibly disconnected) boundary hypersurfaces of ‹X which blow down to these strata;

– β is a diffeomorphism between the interior of ‹X and the regular set of “X; we denote byX
this open set, which is dense in either ‹X or “X;

– β is also a smooth fibration of the interior of each boundary hypersurface ‹XY with base
the corresponding stratum Y and fibre the regular part of the link of Y in “X; moreover,
there is a compactification of Y as a manifold with corners ‹Y such that the extension of β
to all of ‹XY is a fibration with base ‹Y and fibre ›LY ; finally, each fibre ›LY ⊂ ‹XY is a
manifold with corners with iterated fibration structure and the restriction of β to it is the
blowdown onto the smoothly stratified space Y .

We sketch the proof, adapting the construction from [7], to which we refer for further
details. The proof is inductive: if “X has depth k and we simultaneously blow up the union
of the depth k strata to obtain a space “X1, then all the control data of the stratification on “X
lifts to give “X1 the structure of a smoothly stratified space of depth k−1. Iterating this k times
completes the proof. However, in order to stay within the category of smoothly stratified
pseudomanifolds, which by definition have no codimension one boundaries, we proceed as
in the proof of Proposition 2.3 (and as in [7]) and construct a space “X ′1 which is the double
across the boundary hypersurface of the blowup of “X along its depth k strata, and show
that “X ′1 is a smoothly stratified pseudomanifold of depth k − 1. This space “X ′1 is equipped
with an involution τ1 which interchanges the two copies of the double; the actual blowup
is the closure of one component of the complement of the fixed point set of this involution.
Iterating this k times, we obtain a smooth compact manifold “X ′k equipped with k commuting
involutions {τj}kj=1; the manifold with corners we seek is any one of the 2k fundamental
domains for this action.

Proof. – To begin, fix a stratum Y which has maximal depth k; this is a smooth closed
manifold. Recall the notation from §2.1, and in particular the stratified isomorphism
FY from the mapping cylinder of (SY , πY ) to TY and the family of local trivializations
φ : π−1

Y ( U)→ U×C(LY ) for suitable U ⊂ Y . If u ∈ TY ∩π−1
Y ( U), we write φ(u) = (y, z, t)

where y ∈ U, z ∈ LY and t = ρY (u); by axiom v), there is a retraction RY : TY \ Y → SY ,
given on any local trivialization by (y, z, t)→ (y, z, 1) (which is well defined since t 6= 0).

To construct the first blowup, assume for simplicity that there is only one stratum Y of
maximal depth k. Define

(2.1) ‹X ′1 :=
Ä
(“X \ Y )× {−1}

ä
t
Ä
(“X \ Y )× {+1}

ä
t
(
SY × (−2, 2)

)
/ ∼

where (if ε = ±1),

(2.2) (p, ε) ∼ (RY (p), ρY (p)) if p ∈ TY \ Y and εt > 0.

Let “X ′ = (“X × {−1}) t (“X × {+1})/ ∼ where (u, ε) ∼ (u′, ε′) if and only if u = u′ ∈ Y .
Note that ‹X ′1 \ SY × {0} is naturally identified with “X ′ \ Y , so this construction replaces Y
with SY .
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There is a blowdown map β1 : ‹X ′1 → “X ′ given by

β1(u, ε) = (u, ε) if u /∈ Y, β1(u, 0) = πY (u).

Clearly β1 : ‹X ′1 \ SY × {0} → “X ′ \ Y is an isomorphism of smoothly stratified spaces and
(SY × (−2, 2)) is a tubular neighborhood of (β1)−1Y = SY × {0} in ‹X ′1.

We shall prove that ‹X ′1 is a smoothly stratified space of depth k − 1 equipped with an
involution τ1 which fixes SY ×{0} and interchanges the two components of the complement
of this set in ‹X ′1, and which fixes all the control data of ‹X ′1. To do all of this, we must fix a
stratificationS1 of ‹X ′1 and define all of the corresponding control data and show that these
satisfy properties i) - vi).
• Fix any stratum Z ∈ S of “X with depth (Z) < k, and define

(2.3) Z̃ ′1 := (Z × {±1}) t ((SY ∩ Z)× (−2, 2)) / ∼,

where ∼ is the same equivalence relation as in (2.2). The easiest way to see that this is well-
defined is to note that SY ∩ Z is a stratum of the smoothly stratified space SY and that the
restriction

(2.4) FY : Cyl (SY ∩ Z, πY ) −→ Z ∩ TY
is an isomorphism. (This latter assertion follows from axiom ii).)

As above, let Z ′ be the union of two copies of Z joined along Z ∩ Y .
• Now define the stratification S1 of ‹X ′1

(2.5) S1 := {Z̃ ′1 : Z ∈ S \ Y }.

We must now define the control data {T
Z̃′1
, π
Z̃′1
, ρ
Z̃′1
}
Z̃′1∈S1

associated to this stratification.

• Following (2.3), set

(2.6) T
Z̃′1

:= TZ × {±1} t ((SY ∩ TZ)× (−2, 2)) / ∼,

where (p, ε) ∼ (c, t) if tε > 0 and p = FY (c, |t|). Extending (or ‘thickening’) (2.4), by
axiom iii) we also have that FY restricts to an isomorphism between Cyl (TZ ∩ SY , πY ) and
TZ ∩TY . In turn, using axiom ii) again, within the smoothly stratified space SY , FTY ∩Z is an
isomorphism from Cyl (SY ∩ SZ , πZ) to the tubular neighborhood of Z ∩ SY in SY , which
is the same as TSY ∩Z . Using these representations, the fact that (2.6) is well-defined follows
just as before.

Note that Y has been stretched out into SY × {0}, and T
Z̃′1
∩ (SY × {0}) is isomorphic

to T
Z̃′1
∩ (SY × {t}) for any t ∈ (−2, 2).

• The projection π
Z̃′1

is determined by πZ on each slice (SY ∩ TZ) × {t}, at least when

t 6= 0, and extends uniquely by continuity to the slice at t = 0 in ‹X ′1. A similar consideration
yields the function ρ

Z̃′1
.

• One must check that the space ‹X ′1 and this control data for its stratification satisfies
axioms i) - vi). This is somewhat lengthy but straightforward, so details are left to the reader.
• Finally, this whole construction is symmetric with respect to the reflection τ1 defined

by t 7→ −t in TY and which extends outside of TY as the interchange of the two components
of X ′ \ Y . The fixed point set of τ1 is the slice SY × {0}.
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This establishes that the space ‹X ′1 obtained by resolving the depth k smoothly stratified
space “X along its maximal depth strata via this doubling-blowup construction is a smoothly
stratified space of depth k − 1, equipped with one extra piece of data, the involution τ1.

This process can now be iterated. After j iterations we obtain a smoothly stratified space‹X ′j of depth k−j which is equipped with j commuting involutions τi, 1 ≤ i ≤ j. In particular,

the space “X ′k is a compact closed manifold.
It is easy to check, e.g. using the local coordinate descriptions, that these involutions are

‘independent’ in the sense that for any point p which lies in the fixed point set of more than
one of the τi, the −1 eigenspaces of the dτi are independent.

The complement of the union of fixed point sets of the involutions τi has 2k components,
and ‹X is the closure of any one of these components.

The construction is finished if we show that ‹X carries the structure of a manifold with
corners with iterated fibration structure. We proved already that ‹X has the local structure of
a manifold with corners, but we must check that the boundary faces are embedded. For this,
first note that all faces of the resolution of “X ′1 are embedded, and by its description in the
resolution construction, Hk is as well; finally, all corners of ‹X which lie in Hk are embedded
since they are faces of the resolution of SY where Y is the maximal depth stratum and we
may apply the inductive hypothesis. This proves that ‹X is a manifold with corners.

Now examine the structure on the boundary faces inductively. The case k = 1 is obvious
since then ‹X is a manifold with boundary; ∂‹X is the total space of a fibration and there are
no compatibility conditions with other faces. Suppose we have proved the assertion for all
spaces of depth less than k, and thatX is a smoothly stratified space of depth k. Let Y be the
union of all strata of depth k and consider the doubled-blowup space ‹X ′1. This is a stratified
space of depth k−1, so its resolution is a manifold with corners up to codimension k−1 with
iterated fibration structure. Since SY is again a smoothly stratified space of depth k − 1, its
resolution ›SY is also a manifold with corners with iterated fibration structure. The blowdown
of ›SY along the fibres of all of its boundary hypersurfaces is a smoothly stratified space ”SY
and this is the boundary Hk of ‹X1, the ‘upper half’ of ‹X ′1.

Once we have performed all other blowups, we know that the compatibility conditions are
satisfied at every corner except those which lie in ›SY . The images of the other boundaries
of ‹X1 by blowdown into “X1 are the singular strata of this space. Furthermore, there is a
neighborhood of H ′k in ‹X1 of the form SY × [0, 2) (using the variable t in this initial blowup
as the defining function ρk), so that near Hk, ‹X has the product decomposition ›SY × [0, 2).
From this it follows that each fibreFj ofHj , j < k, lies in the corresponding cornersHk∩Hj ;
it also follows that each fibre Fk of Hk is transverse to this corner, and has boundary ∂jFk
equal to a union of the fibres Fj . This proves that conditions a) - c) of the iterated fibration
structure are satisfied.

2.4. Smoothly stratified isomorphisms

We now return to a closer discussion of a good definition of isomorphism between
smoothly stratified spaces. Following Melrose, these isomorphisms are better understood
through their lifts to the resolutions.

To begin, we state a result which is a straightforward consequence of the resolution and
blowdown constructions above.
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P 2.6. – Let “X and “X ′ be two smoothly stratified spaces and ‹X, ‹X ′ their
resolutions, with blowdown maps β : ‹X → “X and β′ : ‹X ′ → “X ′. Suppose that f̂ : “X → “X ′
is a stratified isomorphism as in [7], §2. Then there is a unique diffeomorphism of manifolds
with corners f̃ : ‹X → ‹X ′ which preserves the iterated fibration structures and which satisfies
f̂ ◦ β = β′ ◦ f̃ .

Proof. – If such a lift exists at all, it must be unique simply because it is defined by
continuous extension from a map defined between the interiors of ‹X and ‹X ′. Because of this
uniqueness, it suffices to prove the existence of the lift in local coordinates, and this is done in
[7], §2 Prop. 3.2 and Remark 4.2. Of course, since those authors are not using the notion of
iterated fibration structures, they do not consider the issue of whether the lift preserves the
fibrations at the boundaries; however, a cursory inspection of their proof shows that the map
they construct does have this property.

The converse result is also true, up to a technical point concerning connectedness of the
links.

P 2.7. – Given ‹X, ‹X ′, “X and “X ′, as above, suppose that f̃ : ‹X → ‹X ′
is a diffeomorphism of manifolds with corners which preserves the fibration structures at the
boundaries. Suppose furthermore that “X and “X ′ are the minimal blowdowns of ‹X, ‹X ′ in the
sense of Remark 2.4. Then there exists some choice of control data on the blown down spaces
and a stratified isomorphism f̂ : “X → “X ′ such that f̂ ◦ β = β′ ◦ f̃ .

Proof. – As above, f̂ is uniquely determined over the principal dense open stratum of “X.
The fact that f̃ preserves the fibration structures means that f̂ extends to a continuous
map “X → “X ′. However, this extension is not a stratified isomorphism unless we use the
correct choices of control data on all these spaces. Thus fix control data on ‹X; this may be
pushed forward to control data on ‹X ′ via f̃ . Any set of control data for a manifold with
corners with iterated fibration structure can be pushed down to a set of control data on
its blowdown. Therefore we have now induced control data on “X and “X ′, and it follows
from this construction that the induced map f̂ intertwines these sets of control data, as
required.

Combined with Proposition 2.2, this gives another proof of the result from [7] that any two
sets of control data on a smoothly stratified space “X are equivalent by a smoothly stratified
isomorphism.

This discussion motivates the following

D 4. – A smoothly stratified map f̂ between smoothly stratified spaces “X and “X ′
is a continuous map f : “X → “X ′ sending the open strata of “X smoothly into the open strata
of “X ′ and for which there exists a lift f̃ : ‹X → ‹X ′, f̂ ◦β = β′ ◦ f̃ , which is a b-map of manifolds
with corners preserving the iterated fibration structures.

This definition has the advantage that it is not inductive (even though many of the argu-
ments behind it are), and it provides a clear notion of the regularity of these isomorphisms
on approach to the singular set.
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3. Iterated edge metrics. Witt spaces

In this section we first introduce the class of Riemannian metric on smoothly stratified
spaces with which we shall work throughout this paper. These metrics are only defined
on reg (“X), but the main point is their behavior near the singular strata. These metrics were
also considered by Brasselet-Legrand [8]; closely related metrics had been considered by
Cheeger [13]; they are most easily described using adapted coordinate charts (see pp. 224-5
of [8]) or equivalently, on the resolution ‹X. In the second part of the section we introduce the
Witt condition and recall the fundamental theorem of Cheeger, asserting the isomorphism
between intersection cohomology and Hodge cohomology on these spaces. In the following,
we freely use notation from the last section.

3.1. Existence of iterated edge metrics

We begin by constructing an open covering of reg (“X) by sets with an iterated conic
structure. Let Y1 be any stratum. By definition, for each q1 ∈ Y1 there exist a neighborhood
U1 and a trivialization π−1

Y1
( U1) ∼= U1 × C(LY1

). Now fix any stratum Y2 ⊂ LY1
,

and a point q2 ∈ Y2. As before, there is a neighborhood U2 ⊂ Y2 and a trivialization
π−1
Y2

( U2) ∼= U2 × C(LY2
). Continuing on in this way, the process must stop in no more

than d = depth (Y1) steps when qs lies in a stratum Ys of depth 0 in LYs−1
(which must,

in particular, occur when LYs−1
itself has depth 0). We obtain in this way an open set of the

form

(3.1) U1 × C
(
U2 × C( U3 × · · · × C( Us) ) · · ·

)
,

where s ≤ d, which we denote by W = W q1,...,qs . Choose a local coordinate system y(j)

on Uj , and let rj be the radial coordinate in the coneC(LYj ). Thus (y(1), r1, y
(2), r2, . . . , y

(s))

is a full set of coordinates in W . Clearly we may cover all of “X by a finite number of sets of
this form. We next describe the class of admissible Riemannian metrics on reg (“X) by giving
their structure on each set of this type.

D 5. – We say that a Riemannian metric g defined on reg (“X) is an iterated edge
metric if there is a covering by the interiors of sets of the form W q1,...,qs so that in each such set,

g = h1 + dr2
1 + r2

1(h2 + dr2
2 + r2

2(h3 + dr2
3 + r2

3(h4 + · · ·+ r2
s−1hs))),

with 0 < rj < ε for some ε > 0 and every j, and where hj is a metric on Uj . We also assume
that for every j = 1, . . . , s, hj depends only on y(1), r1, y

(2), r2, . . . , y
(j), rj .

If each hj is independent of the radial coordinates r1, . . . , rj , then we call g a rigid iterated
edge metric. Note that this requires the choice of a horizontal lift of the tangent space of each
stratum Y as a subbundle of the cone bundle TY which is invariant under the scaling action of
the radial variable on each conic fibre.

P 3.1. – Let “X be a smoothly stratified pseudomanifold. Then there exists a
rigid iterated edge metric g on reg (“X).
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Proof. – We prove this by induction. For spaces of depth 0, there is nothing to prove, so
suppose that “X is a smoothly stratified space of depth k ≥ 1, and assume that the result is
true for all spaces with depth less than k.

Let Y be the union of strata of depth k, each component of which is necessarily a closed
manifold; for convenience we assume that Y is connected. Consider the space ‹X ′1 obtained
in the first step of the resolution process in §2.3 by adjoining two copies of “X along Y and
replacing the double of the neighborhood TY by a cylinder SY × (−2, 2). This is a space of
depth k − 1, and hence it possesses a rigid iterated edge metric g1. We may in fact assume
that in the cylindrical region SY × (−2, 2), g1 has the form dt2 + gSY , where gSY is a (rigid)
iterated edge metric on SY which is independent of t. Recalling that SY is the total space of
a fibration with fibre LY , we can define a family of metrics grSY on SY by scaling the metric
on each fibre by the factor r2. This leads to a rigid iterated edge metric gTY := dr2 + grSY
on the tubular neighborhood TY ⊂ “X around Y , which by construction is also rigid. Now
use the induction hypothesis to choose a rigid iterated edge metric gC on the complement
C of the region {r < 1/2} ⊂ TY . Finally, choose a smooth partition of unity {φ(r), ψ(r)}
relative to the open cover [0, 2/3) ∪ (1/3,∞) of R+; the metric φgTY + ψgC on TY extends
to gC outside TY , and satisfies our requirement.

P 3.2. – 1) Any two iterated edge metrics on “X are homotopic within the class
of iterated edge metrics.

2) Any two rigid iterated edge metrics on “X are homotopic within the class of rigid iterated
edge metrics.

Proof. – We proceed by induction. The result is obvious when the depth is 0, so assume
it holds for all spaces of depth strictly less than k and consider a pseudomanifold of depth k
with two iterated edge metrics g and g′.

To begin, then, fix a stratum Y which has maximal depth k. Then Y is a smooth closed
manifold. Recall the notation from §2.1, and in particular the stratified isomorphism
FY from the mapping cylinder of (SY , πY ) to TY and the family of local trivializations
φ : π−1

Y ( U)→ U × C(LY ) for suitable U ⊂ Y . If u ∈ TY ∩π−1
Y ( U), we write φ(u) = (y, z, t)

where y ∈ U, z ∈ LY and t = ρY (u); in particular, by axiom v), there is a retraction
RY : TY \ Y → SY , given on any local trivialization by (y, z, t) → (y, z, 1) (which is well
defined since t 6= 0).

In any of these trivializations, the metric g has the form

(φ−1)∗g = g U(y, t) + dt2 + t2gLY (t, y, z)

and the homotopy

s 7→ g U(y, s+ (1− s)t) + dt2 + t2gLY (s+ (1− s)t, y, z)

removes the dependence of g U and gLY on t while remaining in the class of iterated edge
metrics. Since the coordinate t = ρY (u) is part of the control data, this homotopy can be
performed consistently across all of the local trivializations φ.

Without loss of generality we may assume that

(φ−1)∗g = g U(y) + dt2 + t2gLY (y, z), and (φ−1)∗g′ = g′U(y) + dt2 + t2g′LY (y, z).
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The metrics g U and g′U are homotopic and, by inductive hypothesis, so are the metrics gLY
and g′LY . Thus the metrics (φ−1)∗g and (φ−1)∗g′ are homotopic within the class of iterated
edge metrics on U × C(LY ). Using consistency of the trivializations φ we can patch these
homotopies together and see that g and g′ are homotopic in a neighborhood of Y .

We can thus assume that g and g′ coincide in a neighborhood of Y and, in this neighbor-
hood, are independent of ρY . As in the proof of Proposition 2.5 we consider the space‹X ′1 :=

Ä
(“X \ Y )× {−1}

ä
t
Ä
(“X \ Y )× {+1}

ä
t
(
SY × (−2, 2)

)
/ ∼ .

Define the lift g̃ of g to ‹X ′1 by g on each copy of “X \ Y and

g U(y) + gLY (y, z) + dt2

on each neighborhood of SY × (−2, 2) corresponding to the trivialization φ as above, and
define g̃′ similarly. Then g̃ and g̃′ are iterated edge metrics on a space of depth k − 1 so
by inductive hypothesis are homotopic. Moreover since they coincide in SY × (−2, 2), the
homotopy can be taken to be constant in a neighborhood of SY , and hence the homotopy
descends to a homotopy of g and g′.

If g and g′ are rigid, the homotopies above preserve this.

Cheeger also defines [12] (p. 127) a class of admissible metrics g on the regular part of a
smoothly stratified pseudomanifold “X. He uses a slightly different decomposition of “X and
assumes that on each ‘handle’ of the form (0, 1)n−i × C(N i−1), g induces a metric quasi-
isometric to one of the form

(dy1)2 + · · ·+ (dyn−i)
2 + (dr)2 + r2gNi−1 ;

see [12] for the details. Using the proof of Proposition 3.1 as well as [12] (page 127), we obtain
the following

P 3.3. – 1) Any rigid iterated edge metric as in Definition 5 is admissible in the
sense of Cheeger.

2) Any two admissible metrics are quasi-isometric.

Recall the manifold with corners with iterated fibration structure ‹X, which is the resolu-
tion of “X. Its interior is canonically identified with reg (“X), and we identify these without
comment. Let xα be a global defining function for the boundary hypersurface Hα of ‹X (so
Hα = {xα = 0}); the total boundary defining function of ‹X is, by definition,

ρ =
∏
α∈A

xα.

If g is an iterated edge metric on reg (“X), then set

(3.2) g̃ = ρ−2g.

It is not hard to check that this metric is complete.
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3.2. The Witt condition. Cheeger’s Hodge theorem on Witt spaces

In this paper, we consider only orientable Witt spaces, which are defined as follows.

D 6. – A pseudomanifold “X is a Witt space if, for some (and hence any) stratifi-
cation, all links of even dimension have vanishing lower middle perversity intersection homology
in middle degree, i.e.,

Y ∈ S, dimLY = fY even =⇒ IHfY /2
m (LY ) = 0.

It is a theorem that on a Witt space “X the lower and upper middle perversity intersection
homology groups are equal up to isomorphism: IH∗m(“X) = IH∗m(“X).

A famous result concerning the L2 cohomology of Witt spaces is due to Cheeger.

T 3.4 (Cheeger). – Let “X be a Witt space endowed with an iterated edge metric g.
Denote byH∗(2)(

“X) the cohomology of the L2 de Rham complex with maximal domain; denote

by H ∗(2)(“X) the L2 maximal Hodge cohomology. Then

(3.3) H∗(2)(
“X) = H ∗(2)(“X) = IH∗m(“X,C),

with m denoting either the upper or lower middle perversity.
In particular, if Y is a stratum with link LY , and fY = dimLY is even, then

(3.4) H
fY /2
(2) (LY ) = H fY /2

(2) (LY ) = 0.

4. Iterated edge vector fields and operators

On a closed manifold, L2 and Sobolev spaces are defined using a Riemannian met-
ric but the spaces themselves are metric-independent. A differential operator induces a
bounded map between suitable ones of these spaces, and ellipticity guarantees that this map
is Fredholm. All of this fails when the manifold is not closed, and in this section we describe
some of what is true for iterated edge metrics.

The spaceX := reg (“X) with complete metric g̃ is an example of what is called a Rieman-
nian manifold with bounded geometry. There are natural classes ofL2 and Sobolev spaces on
any such space, as well as a class of ‘uniform’ differential operators, which induce bounded
maps between these function spaces. There is also a calculus of uniform pseudo-differential
operators which contains parametrices of uniform elliptic operators, and which can be used
to prove certain uniform elliptic regularity results. Using that X compactifies to “X, we can
also define weighted L2 and Sobolev spaces in this setting, and the uniform calculus gives
some results for operators mapping between these as well. This uniform calculus does not
establish that these mappings are Fredholm, and indeed, that requires more delicate argu-
ments.

In this section we describe these ideas and explain how they can be applied to the de Rham
operator of the edge iterated metric g. The uniform pseudodifferential calculus can also be
used to obtain a parametrix even after twisting by a bundle of projective finitely generated
modules over a C∗-algebra.
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4.1. Edge vector fields on X

Associated to the complete metric g̃ on X is the space of ‘iterated edge’ vector fields

(4.1) V ie = {V ∈ C∞(‹X,T ‹X) : X 3 q 7→ g̃q(V, V ) ∈ R+ is bounded}.

In the notation of §3, on a neighborhood of the form W q1,...,qs , this is locally spanned over
C∞(‹X) by vector fields of the form

r1 . . . rs−1∂r1 , r1 . . . rs−1∂y(1) , r1 . . . rs−2∂r2 , r1 . . . rs−2∂y(2) , . . . , ∂y(s) .

It is easy to see that V ie forms a locally finitely generated, locally free Lie algebra with respect
to the usual bracket on vector fields; furthermore, Swan’s theorem shows that there is a vector
bundle ieTX over ‹X whose space of sections is V ie,

(4.2) C∞(‹X,ie TX) = V ie.

This bundle ieTX coincides with the usual tangent bundle TX over the interior of ‹X and is
isomorphic to T ‹X, though there is no canonical isomorphism. It is easy to see that g̃ defines
a metric on ieTX.

P 4.1. – (X, g̃) is a complete Riemannian manifold of bounded geometry.

Proof. – Recall the theorem of Gordon-de Rham-Borel, which states that a manifold
is complete if and only if it admits a nonnegative, smooth, proper function with bounded
gradient. For this metric g̃, such a function is− log(ρ), where ρ is the total boundary defining
function. To prove that g has bounded geometry one must check that the curvature tensor
of g̃, and its covariant derivatives, are bounded and that the injectivity radius of g̃ has a
positive lower bound. The former follows from the compactness of ‹X, and the latter can be
shown as in [2].

The set of ie-differential operators is the enveloping algebra of V ie; i.e., it consists of linear
combinations (over C∞(‹X)) of finite products of elements of V ie. We denote by Diffkie(X)

the subset of differential operators that have local descriptions involving products of at most
k elements of V ie. If E and F are vector bundles over ‹X, then the space of ie-differential
operators acting between sections ofE and sections of F is defined similarly, by taking linear
combinations over C∞(‹X,Hom(E,F )).

We define Sobolev spaces for ie metrics by

H0
ie(X) = L2

ie(X) = L2(X,dvol(g̃))

Hk
ie(X) = {u ∈ L2

ie(X) : Au ∈ L2
ie(X), for every A ∈ Diffkie(X)}, k ∈ N;

then defineHt
ie(X) using Calderón interpolation for t ∈ R+ and duality for t ∈ R−. Sobolev

spaces for sections of bundles over ‹X are defined similarly.

We will also allow for operators to act between sections of certain bundles of projective
finitely generated modules over a C∗-algebra; see [56] for the basic definitions. We assume
that we have a continuous map r0 : X → BΓ which extends continuously to

r : “X → BΓ
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where Γ is a countable, finitely generated, finitely presented group. This determines a
Γ-covering, “X ′ → “X; and we will denote by ›C∗rΓ the corresponding bundle, over “X, of free
left C∗rΓ-modules of rank one:

(4.3) ›C∗rΓ := C∗rΓ×Γ
“X ′.

Observe that this bundle induces, after pull back by the blowdown map ‹X → “X, a bundle
on ‹X (for which we keep the same notation). Given vector bundlesE and F over ‹X of rank k
and `, we define bundles E and F over ‹X by tensoringE andF by ›C∗rΓ; we obtain in this way
bundles of projective finitely generated C∗rΓ-modules of rank k and ` . We shall briefly refer
to E and F as C∗rΓ-bundles. An iterated edge differential operator acting between sections
of E and F is defined as above, but allowing the coefficients to be C∗rΓ-linear. The space of
such operators will be denoted

Diff∗ie,Γ(X; E, F ).

Finally, we denote by Ht
ie,Γ(X; E) the corresponding Sobolev C∗rΓ-module, see [45].

4.2. Uniform pseudodifferential operators

We showed above that ie metrics have bounded geometry. This allows us to use the calculus
of uniform pseudo-differential operators as described in the work of Meladze-Shubin (see
[42] and [32]).

We single out the space BC∞(X) of functions which are uniformly bounded with uni-
formly bounded derivatives of all orders. Smooth functions on ‹X are in BC∞(X), but the
latter space is larger since general elements are not smooth at the boundary faces of ‹X. A
vector bundle overX is said to be a bundle of bounded geometry if it has trivializations whose
transition functions are (matrices with entries) in BC∞(X). Vector bundles that extend
smoothly to ‹X have bounded geometry.

The spaces of operators Diff∗B(X;E,F ) and, more generally, Diff∗B,Γ(X; E, F ), are
defined by requiring the coefficients to be in BC∞. These spaces contain Diff∗ie(X;E,F )

and Diff∗ie,Γ(X; E, F ), respectively.
Next, the bounded geometry of (X, g̃) implies that it is possible to find a countable cover

of X by open sets, each of which are normal coordinate charts for the complete metric g̃
and which all have fixed radius ε > 0. Calling these charts Uε(ζi), then it is also possible
to arrange that U2ε(ζi) has uniformly bounded, finite multiplicity as a cover of X. We can
then choose partitions of unity φ̃i, φi subordinate to {U2ε(ζi)} and {Uε(ζi)} respectively
such that φ̃i, φi have bounded derivatives uniformly in i, and such that φ̃i = 1 on suppφi.
These functions can be used to transplant constructions from Rn to X.

We next recall how to transfer pseudodifferential operators from Rn. LetE and F be vec-
tor bundles over ‹X, and denote by d = d

g̃
the distance function associated to the complete

metric g̃. An operator A : C∞c (X;E) → C∞c (X;F ) is called a uniform pseudodifferential
operator of order s ∈ R,

A ∈ Ψs
B(X;E,F ),

if its Schwartz kernel KA ∈ C−∞(X2; Hom(E,F )) satisfies the following properties.

i) For some CA > 0,
KA(ζ, ζ ′) = 0 if d(ζ, ζ ′) > CA.
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ii) For every δ > 0, and any multi-indices α, β there is a constant Cαβδ > 0 such that

|Dα
ζD

β
ζ′ KA(ζ, ζ ′)| ≤ Cαβδ, whenever d(ζ, ζ ′) > δ.

iii) For any i, and using the normal coordinate chart to identify U2ε(ζi) with B2ε(0)

in Rn, φ̃iAφi is a pseudodifferential operator of order s inB2ε(0), whose full symbol σ
satisfies the usual symbol estimates uniformly in i,∣∣∣Dα

ζD
γ
ξ σ(φ̃iAφi)(ζ, ξ)

∣∣∣ ≤ Cαβγ(1 + |ξ|2
g̃
)

1
2 (s−|γ|);

here |ξ |̃
g

is the norm of ξ ∈ T ∗ζX with respect to g̃.

We always assume that the symbols are (one-step) polyhomogeneous. Uniform pseudo-
differential operators form an algebra. There is a well defined principal symbol map, with
values in BC∞(S∗X,hom(π∗E, π∗F )). Ellipticity is defined in a natural way (one requires
the principal symbol to be uniformly invertible, i.e. invertible with inverse in BC∞). The
principal symbol σ(P ) of a uniform pseudodifferential operator P is a section of ieT ∗X (the
bundle dual to ieTX) restricted toX. In general, σ(P ) does not extend to be a smooth section
of ieT ∗X → ‹X.

For a bundle of bounded geometry E and s ∈ R, define the B-Sobolev space

(4.4) Hs
B(X;E)

= {u ∈ C−∞(X;E) : φiu ∈ Hs(Rn;E) with norm bounded uniformly in i}.

The same definition holds forC∗rΓ-bundles and we denote byHs
B,Γ(X; E) the corresponding

C∗rΓ-module. Uniform pseudodifferential operators extend to bounded operators between
B-Sobolev spaces.

If a map r : “X → BΓ is given, then we can define uniform pseudo-differential operators
between sections of E and sections of F by combining the above definition and the classic
construction of Mishchenko and Fomenko; we denote by Ψ∗B,Γ(X; E, F ) the corresponding
algebra. Notice that the principal symbol is in this case a C∗rΓ-linear map between the lifts
of E and F to the cotangent bundle.

The intersection over s ∈ R of the Ψs
B,Γ(X; E, F ) is denoted by Ψ−∞B,Γ (X; E, F ) and

consists of smoothing operators whose integral kernel in X ×X is in BC∞.

Elements of the uniform calculus also define bounded maps between weightedC∗rΓ-Sobo-
lev spaces. Let ρ be the total boundary defining function for ‹X.

L 4.2. – IfA ∈ Ψs
B,Γ(X; E, F ), then for any a, t ∈ R,A induces a bounded operator

A : ρaHt
ie,Γ(X; E)→ ρaHt−s

ie,Γ (X; F ).

Proof. – It is enough to check that ρ−aAρa ∈ A ∈ Ψs
B,Γ(X; E, F ) for any a. The integral

kernel of ρ−aAρa is Å
ρ(ζ)

ρ(ζ ′)

ãa
KA(ζ, ζ ′)

and the lemma follows by noting that
Ä
ρ(ζ)
ρ(ζ′)

äa
is a bounded smooth function on the support

of KA.
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An important property of the uniform pseudodifferential calculus is that it has a symbolic
calculus. By standard constructions, this implies that any elliptic element in DiffkB,Γ(X; E, F )

has a symbolic parametrix, i.e. an inverse modulo smoothing operators. In particular, using
the above proposition, we see that an elliptic ie operatorA ∈ Diffkie,Γ(X; E, F ) has a symbolic
parametrix

Q ∈ Ψ−kB,Γ(X; F , E) s.t. Id E−QP ∈ Ψ−∞B,Γ (X; E), Id F −PQ ∈ Ψ−∞B,Γ (X; F ).

The symbolic calculus also yields the standard characterization of Sobolev spaces. For
instance, if N ∈ N, then

HN
B (X) = {u ∈ C−∞(X) : Au ∈ L2(X) for all A ∈ DiffNB (X)}

= {u ∈ C−∞(X) : Au ∈ L2(X) for some uniformly elliptic A ∈ DiffNB (X)};

in fact, if A ∈ DiffNB (X) is uniformly elliptic, then HN
B (X) equals the maximal domain of A

as an unbounded operator on L2(X). This characterization, applied to an elliptic operator
A ∈ DiffNie (X), shows that HN

ie (X) = HN
B (X). Using Calderón interpolation and duality,

we see that Ht
ie(X) = Ht

B(X) for all t ∈ R, and the same is true for sections of bundles of
bounded geometry and the corresponding C∗rΓ-bundles.

4.3. Incomplete iterated edge operators

The set of incomplete iterated edge differential operators, Diff∗iie,Γ(X; E, F ) is defined in
terms of Diff∗ie,Γ(X; E, F ) by

Diffkiie,Γ(X; E, F ) = ρ−k Diffkie,Γ(X; E, F ),

where ρ = x0 · · ·xm−1. As an operator between weighted L2 spaces with appropriate
different weights, an operator A ∈ Diffkiie,Γ(X; E, F ) is unitarily equivalent to an iterated
edge operator. Thus, for instance, for any a ∈ R, A defines an unbounded operator

A : ρaL2
ie,Γ(X; E)→ ρa−kL2

ie,Γ(X; F )

which has a unique closed extension whose domain is ραHk
ie,Γ(X; E); moreover, A defines

bounded operators

ρaHt
ie,Γ(X; E)→ ρa−kHt−k

ie,Γ (X; F )

for every a and t ∈ R. However, it is the more complicated behavior of A as an unbounded
operator

(4.5) A : ρaL2
ie,Γ(X; E)→ ρaL2

ie,Γ(X; F )

that we will be concerned with. We point out that the operator (4.5) is unitarily equivalent
to the unbounded operator

Ã = ρk/2Aρk/2 : ρa−k/2L2
ie,Γ(X; E)→ ρa+k/2L2

ie,Γ(X; F ).

Since Ã ∈ Diff∗ie,Γ(X; E, F ), this shows that the study of incomplete iterated edge operators
acting on a fixed Hilbert space is the same as the study of complete ie-operators acting
between different Hilbert spaces.
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We point out that theL2 spaces of the incomplete iterated edge metric g and the associated
complete ie metric g̃ = ρ−2g are related by

L2
ie,Γ(X, E) = ρn/2L2

iie,Γ(X, E)

with n equal to the dimension of X, so switching between them only involves a shift of the
weight. Similarly, we introduce the spaces Ht

iie,Γ(X; E) for t ∈ R by

Ht
ie,Γ(X; E) = ρn/2Ht

iie,Γ(X; E).

Thus, for instance, if N ∈ N then HN
iie,Γ(X, E) is the set of elements u ∈ L2

iie,Γ(X, E) such
that for any vector fields V1, . . . , Vp ∈ V ie where p ≤ N, we have V1 . . . Vpu ∈ L2

iie,Γ(X, E).

We say that A ∈ Diffkiie,Γ(X; E, F ) is elliptic if Ã = ρkA is an elliptic ie operator. Elliptic

ie operators always have a symbolic parametrix (see §4.2). A symbolic parametrix ‹Q for Ã
yields a symbolic parametrix Q = ρk/2‹Qρk/2 for A. Recall that a continuous adjointable
C∗rΓ-linear operator K is called C∗rΓ-compact if both K and K∗ are uniform limits of
sequences of C∗rΓ-linear operators whose ranges are finitely generated C∗rΓ−modules. As
is well-known, since smoothing operators are not necessarily C∗rΓ-compact, a symbolic
parametrix is generally not enough to determine when an operator isC∗rΓ-Fredholm, so one
also needs to know about the behavior at the boundary.

However, the uniform calculus does establish elliptic regularity in the sense that, whenever
B ∈ Diffkie,Γ(X; E, F ) is elliptic and a ∈ R, we have

(4.6) u ∈ ρaL2
iie,Γ(X, E), Bu ∈ ρaL2

iie,Γ(X, F ) =⇒ u ∈ ρaHN
iie,Γ(X, E).

4.4. The de Rham operator

We are interested in analyzing the de Rham operator of an iie metric,

ðdR = d+ δ : Ω∗X → Ω∗X.

As with the tangent bundle, it is convenient to replace the bundle of forms
Ω∗(X) = C∞(X,Λ∗(T ∗X)) with the bundle of iie-forms,

iieΩ∗(X) = C∞(X,Λ∗(iieT ∗X)),

where iieT ∗X → ‹X is the rescaled bundle (cf. [44, Chapter 8]) defined by

C∞(‹X, iieT ∗X) = ρ C∞(‹X, ieT ∗X).

We set iieΛ∗X = Λ∗(iieT ∗X), and we have

ðdR ∈ Diff1
iie(X; iieΛ∗(X), iieΛ∗(X))

as we now explain.

First note that whether or not ðdR is an element of Diff1
iie(X; iieΛ∗(X), iieΛ∗(X)) can be

checked locally in coordinate charts. There is nothing to check in the interior of the manifold.
Then, with the notations of §3, we consider a distinguished neighborhood W of a point of a
stratum Y. Thus W is diffeomorphic to B × C(Z) where B is an open subset of Y which is
diffeomorphic to a vector space and C(Z) is the cone whose base Z is a stratified space. The
‘radial’ coordinate of the cone will be denoted by x.
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As in §3, the fibration over B extends to W ,

Z × [0, 1)x −W
φ̃−→ B,

and using x and a choice of connection for this fibration we can write

T ∗X
∣∣
W

= 〈dx〉 ⊕ T ∗Y ⊕ T ∗Z.

With respect to this splitting the metric g restricted to W has the form

g = dx2 + φ̃∗gY + x2gZ

and the differential forms on X can be decomposed as

(4.7)
Λ∗X = (Λ∗Y ∧ Λ∗Z)⊕ dx ∧ (Λ∗Y ∧ Λ∗Z)

iieΛ∗X = (Λ∗Y ∧ xNΛ∗Z)⊕ dx ∧ (Λ∗Y ∧ xNΛ∗Z)

where N is the ‘vertical number operator’, i.e., the map given by multiplication by k when
restricted to forms of vertical degree k. This allows us to split the exterior derivative into

d = edx∂x ⊕ dY ⊕ dZ

where edx denotes the exterior product by dx and correspondingly

δ = ?−1edx∂x ?⊕ ?−1 dY ?⊕ ?−1 dZ? = ?−1edx∂x ?⊕δYx ⊕ δZx
where the x-dependence in δYx and δZx comes from the x-dependence of the Hodge star
operator, ?. A straightforward computation shows that with respect to the splitting (4.7)
of iieΛ∗X, (and with f = dimZ),

(4.8) ðdR =

(
1
x (dZ + δZx ) + dY + δYx − ?−1 ∂x ?− 1

x (f −N)

∂x + 1
xN − 1

x (dZ + δZx )− dY − δYx

)
.

As in [27, (19)] one can write this in terms of operators related to the fibration, however for
our purposes it is more important to point out that the leading order term with respect to x
(as an iie operator) is given by

(4.9) ðdR ∼

(
1
xðZdR + ðYdR −∂x − 1

x (f −N)

∂x + 1
xN − 1

xðZdR − ðYdR

)

where f denotes the dimension of Z, ðYdR and ðZdR are the de Rham operators of φ̃∗gY
∣∣
x=0

and gZ
∣∣
x=0

, respectively. In effect, because of the weighting of the vertical forms, the Hodge
star operator is asymptotically acting like the Hodge star operator of the product metric
at {x = 0}.

By induction on the depth of the stratification and using (4.9) one proves without difficul-
ties the following:

L 4.3. – The operator ðdR is in Diff1
iie, i.e., ρðdR is in Diff1

ie.

We are also interested in the behavior of ðdR after twisting to get C∗-algebra coefficients.
Thus we assume, as before, that we have a continuous map

r : “X → BΓ.
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We compose r with the blow-down map β and we pull back the universal bundle EΓ to ‹X
using f ◦β. We obtain a Galois Γ-covering ‹X ′ over ‹X and the associated bundle ‹C∗rΓ→ ‹X,
with ‹C∗rΓ := C∗rΓ×Γ

‹X ′ .
We restrict ‹C∗rΓ to X. Endowing C∗rΓ × ‹X ′, as a trivial bundle over ‹X ′, with the trivial
connection induces a (non-trivial) flat connection on the bundle ‹C∗rΓ → ‹X; we also obtain
a flat connection on the restriction of ‹C∗rΓ to X (and it is obvious that this connection
will automatically extend to ‹X). Using the latter connection we can define directly ð̃dR, the
twisted de Rham operator on the sections of the vector bundle

iieΛ∗Γ(X) = iieΛ∗X ⊗ ‹C∗rΓ.

By construction ð̃dR ∈ Diff∗iie,Γ, i.e. ρð̃dR is an element in Diff∗ie,Γ.

5. Inductive analysis of the signature operator

In this section we analyze the behavior of the de Rham operator near the singular part
of “X. This is done inductively. The base case is that of a closed manifold, which is classical.
Stratifications of depth one are analyzed in the work of Hunsicker and the third author [27],
where the relationship between intersection cohomology and Hodge cohomology is treated
in detail. Our results for depth one stratifications is implicitly contained in [27]. However,
the treatment in [27] relies heavily on the edge calculus [41] which allows refined results, such
as finding conormal representatives of cohomology classes. Though we cannot use the edge
calculus directly, we proceed by adapting certain arguments from [41] to our context. More
precisely, we define a model for this operator at each point of a singular stratum and then we
establish that these model operators are invertible when acting on the appropriate Sobolev
spaces. Taken together, ellipticity and this asymptotic invertibility are enough to establish the
Fredholm properties we seek.

The main advantage of the de Rham operator over an arbitrary iie operator lies in (4.9).
Indeed this shows that, at a given point q on the boundary, the leading order behavior of ðdR

involves the fibre Z over q only through its de Rham operator ðZdR. To take advantage of
this structure we multiply this operator by a (symmetrically distributed) power of the radial
distance x to the highest depth stratum Y . Since this is closely related to the de Rham
operator for the metric x−2g, which we regard as a ‘partial completion’ of g (i.e. we have
made it complete near Y , but the linkZ of the associated cone bundle with its induced metric
remains incomplete). This allows us to set up an inductive scheme.

5.1. The partial completion of the de Rham operator

Recall that (4.9) was written in a distinguished neighborhoodW of a point of a stratum Y

and thatW is diffeomorphic toB×C(Z) whereB is an open subset of Y diffeomorphic to a
vector space and C(Z) is the cone with smoothly stratified link Z. The ‘radial’ coordinate of
the cone is still denoted by x, which we identify with one the boundary defining functions
xj and thereby extend globally to ‹X. To take advantage of the structure of the de Rham
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operator in W , as it appears in (4.9), we define the ‘partial conformal completion’ of the
signature operator

D0 = x1/2ðdRx
1/2.

The advantage of using x1/2ðdRx
1/2 over, say, xðdR is that the former is symmetric as an

operator
x−1/2L2

iie,Γ(X, iieΛ∗Γ(X))→ x1/2L2
iie,Γ(X, iieΛ∗Γ(X))

(with respect to the natural pairing between the spaces on the right and left here), since ðdR

is a symmetric operator on L2
iie,Γ(X; iieΛ∗Γ(X)) with core domain C∞c .

To analyze ðdR it is useful to consider the operator it induces on various weighted L2

spaces. For later use we point out first that ðdR satisfies

(5.1) ðdR(xav) = [ðdR, x
a]v + xaðdRv = xa[ae(dxx )− ai(dxx ) + ðdR]v,

where e and i denote exterior and interior product respectively, and, second, that we have a
unitary equivalence of unbounded operators (1)

ðdR : xaL2
iie,Γ(X, iieΛ∗Γ(X))→ xaL2

iie,Γ(X, iieΛ∗Γ(X))

↔ Da = x1/2−aðdRx
1/2+a
0 : x−1/2L2

iie,Γ(X, iieΛ∗Γ(X))→ x1/2L2
iie,Γ(X, iieΛ∗Γ(X)).

In order to adapt arguments from [41] it is more natural to work with the operator
x1/2−aðdRx

1/2+a
0 as an unbounded operator from the space x−1/2L2

iie,Γ(X, iieΛ∗Γ(X)) to
itself. Thought of in this way, we denote it as Pa,

(5.2) Pa : x−1/2L2
iie,Γ(X, iieΛ∗Γ(X))→ x−1/2L2

iie,Γ(X, iieΛ∗Γ(X)).

Our analysis of ðdR will proceed in two steps: in the first step we will analyze the behavior
of Pa by adapting two model operators from [41]—the normal operator and the indicial
family. Then, in the second step, we will use the information gleaned about Pa to analyze
ðdR.

R 5.1. – These two steps can be thought of in the following way. We first analyze
x1/2ðdRx

1/2 as a partially complete edge operator onW ; complete in the (x, y) variables with
values in iie-operators on Z. Then, as a second step, we analyze it as an incomplete edge
operator in the (x, y) variables with values, again, in iie-operators on Z.

5.2. The normal operator of Pa

Recall that every point q ∈ Y has a neighborhoodW which we identify using the stratified
diffeomorphism ψ with the product U × C(Z), where U is a neighborhood of the origin
in Rb ∼= TqY . If this neighborhood is small enough that iieΛ∗(X)

∣∣
W

can be identified with
the pull-back of some vector bundle over Z and similarly for iieΛ∗Γ(X)|W , then we call W
a basic neighborhood. In such a W , let us fix smooth nonnegative cutoff functions χ and χ̃,
both independent of theZ variables, with supports inW and equaling one in a neighborhood
of q, and such that χ̃χ = χ. We refer to W , ψ, χ, χ̃ as a basic setup at q ∈ Y .

We can identify a basic neighborhood W with a subset of the product of Z with
TqY

+ ∼= R+
s × Rbu and use this identification to model the operator Pa near q by an

(1) Note that in [27], for a stratification of depth one,Da denotes the de Rham operator of the complex (xaL2
iie, d)

while here Da denotes the de Rham operator of the complex (L2
iie, d) as an operator on xaL2

iie.
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operator on Z × TqY
+, the normal operator of Pa at q ∈ Y . Notice that the bundles

iieΛ∗(X)
∣∣
W

, iieΛ∗Γ(X)|W as pull-backs of bundles over Z, extend naturally to Z × TqY
+,

and that the dilation maps Rt : TqY
+ → TqY

+ for any t > 0 preserve the space of sections
of these bundles.

D 7. – The normal operator Nq(Pa) is the operator whose action on any
u ∈ C∞c (Z × TqY +, iieΛ∗Γ(Z × TqY +)) is given by

Nq(Pa)u = lim
r→0

R∗r (ψ−1)∗ χ̃ Pa ψ
∗ χR∗1/ru.

Thus in local coordinates (s, y, z) the action of the normal operator of Pa on a section
u is obtained by evaluating u at (s/r, y/r, z), applying Pa, dilating back by a factor of r,
and then letting r → 0. It is easy to see that this procedure takes a vector field of the form
a(s, y, z)(s∂s) + b(s, y, z)(s∂y) to the vector field a(0, 0, z)(s∂s) + b(0, 0, z)(s∂y), while for
a vertical vector field V , this procedure returns V

∣∣
s=0,y=0

. In fact, it is easy to see that this
procedure replaces the metric

g
∣∣
W

= g U(x, y) + dx2 + x2gZ(x, y, z)

which is a submersion metric with respect to the projection U×C(Z)→ U, with the product
of an iie metric on C(Z) and the flat metric on U,

gZ×TqY + = g U(0, 0) + ds2 + s2gZ(0, 0, z).

It follows that any natural operator associated to giie is taken by this procedure to the
corresponding natural operator of gZ×TqY + –in particular this is true for ðdR.

L 5.1. – The normal operator of Pa at q ∈ Y is equal to s1/2−aðdRs
1/2+a where ðdR

is the de Rham operator of the metric gZ×TqY + . Thus in local coordinates,

(5.3) Nq(Pa) =

(
ðZdR + sðRb

dR −s∂s − (f0 −N + a+ 1/2)

s∂s + N + a+ 1/2 −ðZdR − sðRb
dR.

)
.

R 5.2. – As explained above, this expression follows by naturality of the de Rham
operator. Alternately, one can compute (5.3) directly from (4.9).

5.3. Localizing the maximal domain

The following lemma will allow us to “localize the maximal domain” of ðdR near the
singular locus.

L 5.2. – Let W , ψ, χ, χ̃ be a basic setup at q ∈ Y .
Let u ∈ x−1/2L2

iie,Γ(X; iieΛ∗Γ(X)) be such that Pau ∈ x1/2L2
iie,Γ(X; iieΛ∗Γ(X)). Then

χu ∈ x−1/2L2
iie,Γ(X; iieΛ∗Γ(X)) and Pa(χu) ∈ x1/2L2

iie,Γ(X; iieΛ∗Γ(X)).

Proof. – Clearly Pa(χu) = χ(Pau) + [Pa, χ]u, and, since χ is independent of the
Z-variables, (4.9) allows us to see that [Pa, χ] = σ(Pa)(dχ) = xH whereH is a multiplication
operator by smooth bounded functions. Since u ∈ x−1/2L2

iie,Γ(X; iieΛ∗Γ(X)) we see that
[Pa, χ]u ∈ x1/2L2

iie,Γ(X; iieΛ∗Γ(X)), which establishes the lemma.
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P 5.3. – Let u ∈ x−1/2L2
iie(X; iieΛ∗Γ(X)) with compact support included

in W and such that χ = 1 on supp u. Then Pau ∈ x1/2L2
iie(X; iieΛ∗Γ(X)) if and only if

Nq(Pa)(u ◦ ψ−1) ∈ s1/2L2
iie(Z × TqY +, iieΛ∗Γ(Z × TqY +)).

Proof. – We prove only one implication, the other one is similar. Since we work in the
distinguished chart W , we may identify u with u ◦ ψ−1.

Let ρ denote a total boundary defining function. The operator ρ
xPa is an elliptic ie differ-

ential operator, so elliptic regularity (4.6) yields u ∈ x−1/2H1
iie(X; iieΛ∗Γ(X)).

We observe that, in the expression (4.8), x(dY + δYx ) sends x−1/2H1
iie(X; iieΛ∗Γ(X)) into

x1/2L2
iie(X; iieΛ∗Γ(X)) and a similar observation is true for sðRb0

dR , so using formulas (4.8) and
(5.3), we get Pau−Nq(Pa)(u ◦ ψ−1) ∈ s1/2L2

iie, which proves the lemma.

5.4. Injectivity of Nq(Pa)

We take as an inductive hypothesis that the signature operator on Z is self adjoint with
discrete spectrum. We make two further assumptions:

(5.4)
a) Spec(ðZdR) ∩ (−1, 1) ⊆ {0},
b) If k = f0

2 then H k
(2)(Z) = 0.

By Theorem 3.4, b) is a topological condition on Z.

P 5.4. – 1) There exists a (rigid) iterated edge metric (cf. Theorem 3.1) such
that condition a) is satisfied on all links in “X. Such a metric will be called adapted (rigid)
iterated edge.

2) Any two adapted (rigid) iterated edge metrics are homotopic within the class of adapted
(rigid) iterated edge metrics.

Proof. – 1) Observe that condition a) can be arranged to hold along a given stratum by
scaling the metric on Z. To check that this can be done coherently for all links in the Witt
space “X, one must retrace the proof of Theorem 3.1 concerning the existence of rigid iterated
edge metrics. Following the inductive step there, we see that we can scale the metric on the
link of the highest depth stratum so that a) is satisfied without disturbing the corresponding
property for all the links of lower depth strata.

2) Retrace the proof of Proposition 3.2 along the lines of the previous proof.

L 5.5. – Let a ∈ (0, 1) and assume the conditions (5.4) and that Theorem 1.1 has
been proven for Z. Then N(Pa) acting on

s−1/2L2
iie(Z × TqY +, iieΛ∗Γ(Z × TqY +))

is injective on its maximal domain.

Proof. – Define R = s−1/2Nq(P0)s−1/2 (this is effectively Nq(ðdR)), so that

R =

(
1
sðZdR + ðRb

dR −∂s − 1
s (f0 −N)

∂s + 1
sN − 1

sðZdR − ðRb
dR

)
.

Since Nq(Pa) = s1/2−aRs1/2+a, if u solves Nq(Pa)u = 0 then

v = s
f0
2 +au
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solves Rs−
f0−1

2 v = 0. Clearly u ∈ s−1/2L2
iie(Tq) precisely when we have v ∈ s

f0−1

2 +aL2
iie(Tq),

so it suffices to solve

Rs−
f0−1

2 v = 0, v ∈ s
f0−1

2 +aL2
iie(sf ds dy dz, iieΩ) = s−

1
2 +aL2

iie(ds dy dz, iieΩ).

The advantage of this formulation is that v is also in the null space of

(5.5)

s
f0−1

2 (sR)s−
f0−1

2 =

(
ðZdR + sðRb

dR −s∂s + N− f0

2 −
1
2

s∂s + N− f0

2 + 1
2 −ðZdR − sðRb

dR

)

and s
f0−1

2 (s2R2)s−
f0−1

2 =

(
K 1 −2dZ

−2δZ K−1

)
,

where K ` = ∆Z + s2∆Rb − (s∂s)
2 + (N− f0

2 + `
2 )2.

To analyze these systems, we point out that L2 forms on Z satisfy a strong Kodaira
decomposition, i.e., every L2 form on Z can be written in a unique way as a sum of a form
in the image of dZ , a form in the image of δZ and a form in the joint kernel of dZ and
δZ . As explained in [27, §2] weak Kodaira decompositions are a general feature of Hilbert
complexes. Inductively, we are assuming that d+δ is essentially self-adjoint and that its closed
extension has closed range; this implies, see [27, Proposition 4.6], that d has a unique closed
extension and that this extension has closed range (for instance, because d coincides with d+δ

on (ker d)⊥). Hence the weak Kodaira decomposition is a strong Kodaira decomposition.

The upshot is that if v = (α, β), then we can write

α = dZα1 + δZα2 + α3, α1 ∈ (ker dZ)⊥, α2 ∈ (ker δZ)⊥, α3 ∈ ker dZ ∩ ker δZ

and similarly for β.

Inserting this decomposition into s
f0−1

2 (sR)s−
f0−1

2 v = 0 and using

dZN = (N− 1)dZ , δZN = (N + 1)δZ

yields

dZ(δZα2 + sðRb
dRα1 − s∂sβ1 + (N− f0

2 + 1
2 )β1)

+ δZ(dZα1 + sðRb
dRα2 − s∂sβ2 + (N− f0

2 −
3
2 )β2)

+ sðRb
dRα3 − s∂sβ3 + (N− f0

2 −
1
2 )β3 = 0

dZ(− δZβ2 − s∂Rb
dRβ1 + s∂sα1 + (N− f0

2 + 3
2 )α1)

+ δZ(−dZβ1 − sðRb
dRβ2 + s∂sα2 + (N− f0

2 −
1
2 )α2)

− sðRb
dRβ3 + s∂sα3 + (N− f0

2 + 1
2 )α3 = 0
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and hence another application of the Kodaira decomposition shows that
δZα2 + sðRb

dRα1 − s∂sβ1 + (N− f0

2 + 1
2 )β1 = 0

dZα1 + sðRb
dRα2 − s∂sβ2 + (N− f0

2 −
3
2 )β2 = 0

−δZβ2 − s∂Rb
dRβ1 + s∂sα1 + (N− f0

2 + 3
2 )α1 = 0

−dZβ1 − sðRb
dRβ2 + s∂sα2 + (N− f0

2 −
1
2 )α2 = 0

(5.6)

{
sðRb

dRα3 − s∂sβ3 + (N− f0

2 −
1
2 )β3 = 0

−sðRb
dRβ3 + s∂sα3 + (N− f0

2 + 1
2 )α3 = 0.

(5.7)

We also insert the Kodaira decomposition of v into s
f0−1

2 (s2R2)s−
f0−1

2 v, and since
dZ K ` = K `−2d

Z , δZ K ` = K `+2δ
Z , this yields

dZ( K 3α1 − 2δZβ2) + δZ( K−1α2) + K 1α3 = 0,

dZ( K 1β1) + δZ( K−3β2 − 2dZα1) K−1β3 = 0.

Once again another application of the Kodaira decomposition shows that

K 3α1 = 2δZβ2(5.8)

2dZα1 = K−3β2(5.9)

K−1α2 = K 1α3 = K 1β1 = K−1β3 = 0.(5.10)

We are looking for solutions of (5.6)-(5.10) in s−
1
2 +aL2

iie(dsdydz, iieΩ).

Let us find the null space of K `. Conjugating by the Fourier transform in Rb (with dual
variable η to y) and introducing the new variables t = s|η|, η̂ = η

|η| , takes K ` to“K ` = ∆Z + t2 − (t∂t)
2 + (N− f0

2 + `
2 )2.

By assumption ∆Z has discrete spectrum and, since ∆Z commutes with “K `, we can restrict
to the λ eigenspace of ∆Z ,“K `,λ = λ+ t2 − (t∂t)

2 + (N− f0

2 + `
2 )2.

The null space of this operator can be described directly in terms of Bessel functions of an
imaginary argument

AIν(t) +BKν(t), ν =
»
λ+ (N− f0

2 + `
2 )2, t ∈ R+.

The functions Iν increase exponentially with t, so to stay in a (polynomially weighted) L2

space, we must haveA = 0. The functionsKν decrease exponentially with t as t→∞, while

Kν(t) ∼

{
t−|ν| if ν 6= 0

− log t if ν = 0
as t→ 0.

We are interested in avoiding Kν ∈ ta−
1
2L2( dt), which means we need to have

1 ≤ |ν|+ a = a+
»
λ+ (N− f0

2 + `
2 )2, for all a > 0,

hence 1 ≤ λ+ (N− f0

2 + `
2 )2.

If λ 6= 0, then our assumption is that λ ≥ 1, so this is automatic. If λ = 0 then we are
looking for elements in the null space of K ` that are also in the null space of ∆Z , so this
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corresponds to α3 and β3. From (5.7) we see that α3 = 0 if and only if β3 = 0 : indeed if

α3 = 0 then β3 = sN−
f0

2 −
1
2F with F independent of s, but this is never in a polynomially

weighted L2 in s, and similarly if β3 = 0. The same reasoning shows that ðRb
dRα3 = 0 if and

only if β3 = 0 and vice-versa. Thus, since α3 is in the null space of K 1 and β3 is in the null
space of K−1, to avoid elements of the null space with λ = 0 we need to have either

1 ≤ |N− f0

2 + 1
2 | or 1 ≤ |N− f0

2 −
1
2 |.

This is automatic unless N = f0

2 , but this case does not happen since by assumption there
are no middle degree harmonic forms on Z.

This implies, from (5.10), that α2, α3, β1, and β3 do not contribute to the null space
of Nq(Pa) for a > 0, and we only need to rule out α1 and β2. First note that if α1 = 0, then
from (5.9) K−3β2 = 0, but since K−3 does not have non-zero null space in
s−

1
2 +aL2

iie(dsdydz, iieΩ), this implies β2 = 0. Similarly β2 = 0 implies α1 = 0.

Next, substituting (5.9) into the second equation of (5.6) we have

K−3β2 + 2sðRb
dRα2 − 2s∂sβ2 + 2(N− f0

2 −
3
2 )β2 = 0.

Applying K−1s
−1 kills the second term by (5.10), so

K−1s
−1( K−3 − 2s∂s + 2(N− f0

2 −
3
2 ))β2 = 0,

but

K−3 − 2s∂s + 2(N− f0

2 −
3
2 )

= ∆Z + s2∆Rb − (s∂s)
2 + (N− f0

2 −
3
2 )2 − 2s∂s + 2(N− f0

2 −
3
2 ) = s−1 K−1s,

so this says K−1(s−2 K−1s)β2 = 0. Since we know that K−1 does not have non-zero null
space in s−

1
2 +aL2

iie(dsdydz, iieΩ), we must have

s−2 K−1sβ2 = 0.

Similarly substituting (5.8) into the third equation of (5.6) and then applying K 1s
−1 yields

K 1(s−2 K 1sα1) = 0 and hence

s−2 K 1sα1 = 0.

By the reasoning above, the projection onto theλ eigenspace of ∆Z of β2 is (after changing
variables to t and η̂) of the form

(5.11) Pλβ̂2 = C
|η|
t
K»

λ+(N− f0

2 −
1
2 )2

(t)

and the corresponding projection of α1 is of the form

(5.12) Pλα̂1 = C ′
|η|
t
K»

λ+(N− f0

2 +
1
2 )2

(t).

Thus to avoid elements of the null space we need to have either

1 ≤ 1 + a+
»
λ+ (N− f0

2 + 1
2 )2 or 1 ≤ 1 + a+

»
λ+ (N− f0

2 −
1
2 )2

and these are automatic for all a ≥ −1.
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5.5. Indicial roots

Another model operator of Pa is its indicial family, defined using the action of Pa on
polyhomogeneous expansions. The indicial family is a one parameter family of operators
on Y , I(Pa; ζ) defined by

Pa(xζf) = xζI(Pa; ζ)f
∣∣
x=0

+ O(xζ+1).

The base variables at the boundary enter into the indicial family as parameters, so we can
speak of the indicial family at the point q ∈ Y by restricting not just to x = 0 but to the fibre
over q. This refinement of the indicial family is denoted by Iq(Pa; ζ); from (4.9) it is given by

Iq(Pa; ζ) =

(
ðZdR −ζ − (f0 −N + a+ 1/2)

ζ + N + a+ 1/2 −ðZdR

)
,

which coincides with the indicial family of the normal operator at q ∈ Y . The values of ζ for
which Iq(Pa; ζ) fails to be invertible (on L2

iie(Z)) are known as the indicial roots of Pa at q,
or the boundary spectrum of Pa at q,

specb(Nq(Pa)).

As we show below, this set depends on specðZdR, and hence relies on the inductive hypothesis
on Z.

An equivalent model of Pa is the indicial operator:

Iq(Pa) =

(
ðZdR −t∂t − (f0 −N + a+ 1/2)

t∂t + N + a+ 1/2 −ðZdR.

)
.

It is related to the indicial family by the Mellin transform,

M(Iq(Pa)u)(ζ) = Iq(Pa;−iζ) M(u)(ζ).

Recall that this transform is defined, e.g., for u ∈ C∞c (R+) by

(5.13) Mu(ζ) =

∫ ∞
0

u(x)xiζ−1 dx,

and extends to an isomorphism between weighted spaces

(5.14) xαL2

Å
R+,

dx

x

ã
∼=−→ L2 ({η = α}; dξ)

where η = =ζ and ξ = <ζ. The inverse of the Mellin transform as a map (5.14) is given by

M−1(v)(x) =
1

2π

∫
η=α

v(ζ)x−iζ dξ.

L 5.6. – The indicial roots of Pa are contained in the union of

(6.16)

⋃
k 6= f0

2

{
− f0

2 − a±
∣∣∣k − f0

2 ±
1
2

∣∣∣} , ⋃
λk 6=0

{
− f0

2 − a±
»
λk + (k − f0

2 + `
2 )2
}
,

and
⋃
λk 6=0

{
1− f0

2 − a±
»
λk + (k − f0

2 + `′

2 )2
}

where k ∈ {0, . . . , f0}, λk is in the spectrum of ∆Z acting on k-forms, ` ∈ {±1,±3} and
`′ ∈ {±1}.
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The indicial operator of Pa has a bounded inverse on the space t−1/2L2
iie(Z × R+

t ) for all
a ∈ (0, 1).

Proof. – An analysis similar to—but simpler than—that above applies to the equation
Iq(Pa)u = 0. Indeed, it suffices to replace (t∂t)

2 − t2 in the ‘equations to solve’ by (t∂t)
2.

Since the solutions to (t∂t)
2u = ν2u are linear combinations of tν and t−ν , the solutions

of Iq(Pa)u = 0 are obtained from the solutions to Nq(Pa)u = 0 by replacing each Iv(t)
by tν and each Kν(t) by t−ν . Both of these contribute indicial roots, since for the indicial
family we do not impose growth restrictions.

For the indicial operator, we are imposing growth restrictions and, as before, asking for
solutions to be in t−1/2L2(tf dt) excludes those involving tν , hence conditions (a) and (b)
show that there are no solutions involving t−ν for a > 0. Thus the proof of Lemma 5.5 shows
that the indicial operator Iq(Pa) is injective on t−1/2L2(Z × R+) as long as a > 0.

Similarly, the proof of Lemma 5.5 shows that if there is a non-zero solution to Iq(Pa; ζ)u = 0

then ζ must be in one of the sets in (6.16). An advantage of the indicial family is that we can
bring to bear our inductive hypotheses about ðZdR. Indeed, decompose Iq(Pa) as

Iq(Pa)(ζ) =

(
ðZdR −ζ − (f0 −N + a+ 1/2)

ζ + N + a+ 1/2 −ðZdR

)

= ðZdR

(
Id 0

0 − Id

)
+

(
0 −ζ − (f0 −N + a+ 1/2)

ζ + N + a+ 1/2 0

)
= A+B.

Inductively we know that A is essentially self-adjoint, has closed range, and its domain,
D(A), includes compactly into L2

iie(Z). It follows that the operator B : D(A) → L2
iie(Z)

(where D(A) is endowed with the graph norm) is compact, i.e., B is relatively compact with
respect toA, and so Iq(Pa; ζ) has a unique closed extension, has closed range, and its domain
is also D(A).

Since ðZdR is essentially self-adjoint, the adjoint of Iq(Pa)(ζ) on L2(Z) is

Iq(Pa; ζ)∗ =

(
ðZdR ζ + N + a+ 1/2

−ζ − f + N− a− 1/2) −ðZdR

)
= Iq(Pa;−(ζ + f + 2a+ 1)).

Notice that ζ is in one of the sets in (6.16) if and only if −(ζ + f + 2a + 1) is. Thus we see
that if ζ is not in one of these sets, then Iq(Pa; ζ) is in fact invertible with bounded inverse.
In fact, since the domain of Iq(Pa; ζ) is D(A), its inverse is a compact operator. This proves
that (6.16) contains the indicial roots of Nq(Pa). Denote the inverse of Iq(Pa; ζ) by

Q(ζ) : L2
iie(Z)→ D(A) ↪→ L2

iie(Z).

We obtain an inverse for Iq(Pa) as an operator on t−1/2L2
iie(R+×Z) by applying the inverse

Mellin transform to Q(ζ) along the line η = − f2 − 1, which we can do as long as − f2 − 1 is
not an indicial root. If (a) and (b) hold, then this is true for all a ∈ (0, 1).
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5.6. Bijectivity of Nq(Pa)

We now show that the normal operatorNq(Pa) is a bijection between its maximal domain
in s−1/2L2

iie(Z × TqY +) and s−1/2L2
iie(Z × TqY +) when 0 < a < 1.

Observe first that by Lemma 5.5, assuming conditions a) and b), this mapping is injective
for these values of a. Therefore, a simple duality argument shows that it suffices to show that
it has closed range. Indeed, since ðdR is symmetric on L2

iie(X; iieΛ∗X), the operator

D0 : x−1/2L2
iie(X; iieΛ∗X)→ x1/2L2

iie(X; iieΛ∗X)

coincides with its formal adjoint. It is then straightforward that the formal adjoint of P0 is

(P0)∗ = x−1/2ðdRx
3/2 : x−1/2L2

iie(X; iieΛ∗X)→ x−1/2L2
iie(X; iieΛ∗X),

and similarly,

(5.15) (Pa)∗ = (x1/2−aðdRx
1/2+a)∗ = x−1/2+aðdRx

3/2−a = P1−a.

L 5.7. – The normal operator Nq(Pa) is bijective as an operator on
s−1/2L2

iie(Z × TqY +) acting on its maximal domain, for all a ∈ (0, 1).

Proof. – For the duration of this section we write L2
iie simply as L2 and also omit the

bundle iieΛ∗(Z × TqY +) to simplify notation.
Following the proof of Lemma (5.5), we pass to the Fourier transform in the horizontal

variables, introducing the variable η dual to y, and then rescale by setting t = s|η|, η̂ = η/|η|.
This leads to the family of operators‹Nq(Pa, η̂) =

(
ðZdR + t cl (η̂) −t∂t − (f0 −N + a+ 1/2)

t∂t + N + a+ 1/2 −ðZdR − t cl (η̂)

)
where cl (η̂) = i

η̂
+ e

η̂
is a Clifford multiplication and η̂ lies in the unit sphere Sb−1. Notice

that

(5.16) ‹Nq(Pa, η̂) = I(Pa) + tA(η̂)

whereA is a bounded matrix. These operations are all reversible, so it is enough to study this
simpler family of operators, and in particular to show that it is a bijection from its maximal
domain in t−1/2L2 to t−1/2L2. We have already shown in Lemma 5.5 that this operator is
injective, and by duality, i.e. using injectivity for ‹Nq(Pa, η̂)∗ = ‹Nq(P1−a,−η̂), it also has
dense range. Thus it suffices to show that it has closed range, and to prove this we follow
a standard procedure by constructing local parametrices for ‹Nq(Pa, η̂) in the two regions
(0, 2T ) × Z and (T,∞) × Z for any fixed T . Notice that we only need to construct a right
parametrix for ‹Nq(Pa, η̂), since a left parametrix is obtained as the dual of a right parametrix
for ‹Nq(P1−a,−η̂).

First consider the region t < 2T . We have indicated in §5.5 that Iq(Pa) has an inverse
H0 = Iq(Pa)−1 on t−1/2L2, and hence‹Nq(Pa, η̂) ◦H0 = Id + tA(η̂)H0.

Since H0 maps into the domain of Iq(Pa), and the restriction of this domain to forms with
bounded support in t includes compactly in t−1/2L2, we see that the second term on the right
is a compact operator on this subspace.
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For forms supported in t > T , as in [41, Lemma 5.5], consider the partial symbol

σ̃(‹Nq(Pa, η̂)2) =

(
∆Z + t2 + t2τ2 0

0 −(∆Z + t2 + t2τ2)

)
where τ is the variable dual to ∂t. Clearly,

|
〈
σ̃(N2

q )u, u
〉
| ≥ t2(1 + τ2)‖u‖;

the inner product and norm are those of t−1/2L2. The operator norm of σ̃(N2
q )−1 is bounded

by t−2(1 + τ)−2, so that

H∞(u) =

∫
eitτ σ̃(N2

q )−1û dτ

defines a parametrix forN2
q (η̂) in the large region. As before, ‹N2

q ◦H∞ = ‹Nq ◦ (‹Nq ◦H∞) =

Id +B where B is compact, hence ‹Nq(Pa, η̂) ◦H∞ is the parametrix we seek.

Now choose a partition of unity {χ0, χ∞} relative to the open cover (0, 2T )∪(T,∞), and
fix smooth functions χ̃j such that χ̃j = 1 on the support of χj and which vanish outside a
slightly larger neighborhood. The right parametrix is then given by‹H = χ̃0H0χ0 + χ̃∞(‹Nq(Pa, η̂) ◦H∞)χ∞.

The last thing we need to check is that ‹Nq(Pa, η̂) ◦ ‹H = Id − Q, where Q is compact.
However,

Q = [‹Nq(Pa, η̂), χ̃0]H0χ0 + [‹Nq(Pa, η̂), χ̃∞](‹Nq(Pa, η̂ ◦H∞)χ∞ + χ̃∞Bχ∞.

The two commutator terms are operators of order 0, i.e. multiplication operators, with
compact support, and using the mapping properties of these two parametrices, we conclude
that Q is compact, as claimed.

This proves that ‹Nq(Pa, η̂) is Fredholm, which completes the argument.

5.7. Integration by parts identity for Nq(Pa)

In computing the indicial roots of Pa, we have made strong use of the symmetries of the
normal operator of Pa, namely the translation invariance along horizontal directions (i.e.,
those tangent to Y ) and dilation invariance in TqY +. In this section we exploit this invariance
to establish an integration by parts identity, which will ultimately allow us to show that any
‘extra’ vanishing of Nq(Pa)u at x = 0 translates to some degree of vanishing of u at x = 0,
the latter degree bounded by the indicial roots of Nq(Pa).

We will need the Sobolev spaces on Z × TqY + analogous to those on X.

D 8. – Let N ∈ N. We define HN
pie(Z × TqY

+; iieΛ∗) to be the set of
u ∈ L2

iie(Z × TqY +; iieΛ∗) such that for any positive integer p ≤ N,

X1 . . . Xpu ∈ L2
iie(Z × TqY +; iieΛ∗)

where theXj are vector fields which are either of the form s∂s, s∂uj (1 ≤ j ≤ b0) or of the form
X(z, s, u) = X(z) for each (z, s, u) ∈ Z × TqY +, where X(z) is an edge vector field of the
fibre Z = Zq. Notice that these vector fields s∂s, s∂uj X(z) generate a Lie algebra.
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As we have already used in §5.4, if a function in L2
iie(X) is O(xγ) near x = 0 then we must

have 2γ+f0 > −1. As the L2 cut-off will be very important below we introduce the function

(5.17) δ0(γ) = γ − f0 + 1

2
,

thus a function in O(xγ) is in xaL2(xf0 dx) precisely when γ > δ0(a).

Briefly, let us abbreviate L2
iie(Z × TqY

+, iieΛ∗(Z × TqY
+)) by L2

iie(q). Let C be a fixed
number in [−1/2, 1] and ε ∈ (0, 1).Let nowR be the unbounded operator induced byNq(P0)

on sC+εL2
iie(q) with domain C∞c ; with a small abuse of notation we denote also by R the

operator induced byNq(P0) on sC−εL2
iie(q) (acting distributionally). We consider the natural

pairing 〈·, ·〉 : sC+εL2
iie(q) × sC−εL2

iie(q) → C between these two spaces (2). Let Rt be the
formal transpose of R with respect to this pairing. Rt is a differential operator and we let it
act, distributionally, on sC−εL2

iie(q).

We will establish that, if

u ∈ sCL2
iie(q), v ∈ sC−εL2

iie(q), and Ru, Rtv ∈ sC+εL2
iie(q)

then, with respect to the natural pairing 〈·, ·〉 above, we have

〈v,Ru〉 =
〈
u,Rtv

〉
.

Notice that, although both pairings make sense, this is not an instance of the definition ofRt,
since both u and v are thought of as elements of sC−εL2

iie(q).

Assume inductively that we have shown Dmax(ðdR) = Dmin(ðdR) for stratifications of
depth at most m− 1 so that in particular〈

ðZdRu, v
〉

=
〈
u,ðZdRv

〉
for any two elements of Dmax(ðZdR).

On the one hand we know that, for u, v ∈ sCL2
iie(q), the natural inner product is given by

〈u, v〉 =

∫
s−2Cu ∧ ∗v

and, on the other, the normal operator is given by

Nq = Nq(Pa) =

(
ðZdR + sðRb

dR −s∂s + N− f − (a+ 1/2)

s∂s + N + (a+ 1/2) −ðZdR − sðRb
dR

)
,

so as anticipated we only have to justify integrating by parts the s∂s and sðRb
dR.

We can assume that we are working with sections compactly supported in a basic neigh-
borhood W.

Our main tool is the Mellin transform (5.13). Using the inclusions xaL2 ⊂ xbL2 whenever
b < a it follows that the Mellin transform of a function in xaL2(R+, dx) is holomorphic in
the half-plane {η < a− 1/2}. The Mellin transform is very useful for studying asymptotics.
For instance, if u is polyhomogeneous then Mu extends to a meromorphic function on the
whole complex plane with poles at locations determined by the exponents occurring in the

(2) Recall that this pairing is given by 〈u, v〉 := (u′, v′)sCL2 if u = sεu′ and v = s−εv′.
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expansion of u. Switching from L2(R+) to L2
iie(X), assume that ω is supported in a basic

neighborhood W of q ∈ Y , then we have

ω ∈ sαL2
iie(X) ⇐⇒ Mω ∈ L2

(
{η = δ0(α0)}, dξ;L2(dy dvolZ)

)
where M denotes Mellin transform in s (in the usual coordinates), dy denotes the Lebesgue
measure of Rb0 , and dvolZ denotes the volume form associated to the edge iterated metric
of Z. Notice that Mω extends to a holomorphic function on the half-plane {η < δ0(α0)}
with values in L2(dy dvolZ).

Elliptic regularity (via the symbolic calculus) tells us that elements in the null space of an
elliptic edge-operator are inH∞iie (X; iieΛ∗), and hence smooth in the interior of the manifold.
However, the derivatives of elements in H∞iie (X; E) will typically blow up at the boundary,
which is just to say that knowing ρ∂yu ∈ L2

iie(X; iieΛ∗) tells us that ∂yu ∈ ρ−1L2
iie(X; iieΛ∗).

Using the Mellin transform we can turn this around: if u is in the null space of an elliptic
ie-operator, A, as a map

A : ραL2
iie(X; iieΛ∗)→ ραL2

iie(X; iieΛ∗)

then, in the absence of indicial roots, we can view u as an element of a space with a stronger
weight at the cost of giving up tangential regularity at the boundary. We shall concentrate
directly on the normal operator ofPa, even though much of what we prove could be extended
to more general differential operators.

L 5.8. – Let W be a basic neighborhood for the point q ∈ Y . Set R = Nq(Pa) and
assume that, for some α ∈ R and ε ∈ (0, 1),

(5.18) {<ζ + f
2 + 1

2 : ζ ∈ specb(R)} ∩ [α− ε, α+ ε] ⊆ {α}.

1. Assume v ∈ sαL2
iie(Z × TqY +; iieΛ∗) is supported in W and

Rv ∈ sα+εL2
iie(Z × TqY +; iieΛ∗),

then

v ∈ sα+εL2(sf0 ds dvolZ , H
−1(dy)⊗ iieΛ∗)

= {sα+εu : u ∈ Diff1(Y )L2
iie(W ; iieΛ∗)}.

Moreover, as a map into L2(dvolZ , H
−1(dy) ⊗ iieΛ∗) the Mellin transform of v is

holomorphic in the half-plane {η < δ0(α+ ε)}.
2. Assume that u ∈ sαL2

iie(Z × TqY +; iieΛ∗) and w ∈ sα−εH2
pie(Z × TqY +; iieΛ∗) (cf.

Definition 8) are such that

suppu ⊆W

Ru,Rtw ∈ sα+εL2
iie(Z × TqY +; iieΛ∗),

then with respect to the natural pairing

〈·, ·〉 : sα−εL2
iie(Z × TqY +; iieΛ∗)× sα+εL2

iie(Z × TqY +; iieΛ∗)→ C

we have 〈w,Ru〉 = 〈u,Rtw〉.
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Proof. – (1) Since v is supported in a normal neighborhood of q ∈ Y , we can write

Iq(R)v = Hv + h

where Iq(R) is the indicial operator of R and H contains all of the ‘higher order terms’ at
the boundary, e.g., s2∂s, s∂u.

Passing to the Mellin transform, and using that Iq(R; ζ) depends polynomially on ζ, we
have an equality

(5.19) Mv(ζ) = I(R; iζ)−1 ( M(Hv + h)(ζ))

as meromorphic functions {η < δ0(α)} → L2(dy dvolZ ; Λ∗),

of course since the left hand side is holomorphic on this half-plane so is the right hand
side. On the other hand, M(h) is a holomorphic function into this space on the half plane
{η < δ0(α + ε)}, and, reasoning as in [41], M(Hv) extends holomorphically to this half
plane but we have to give up tangential regularity,

M(Hv) : {η < δ0(α+ ε)} → L2(dvolZ ;H−1(dy)⊗ Λ∗) holomorphically.

This gives us an extension of (5.19) to

(5.20) Mv(ζ) = I(R; iζ)−1 ( M(Hv + h)(ζ))

as meromorphic functions {η < δ0(α+ ε)} → L2(dvolZ ;H−1(dy)⊗ Λ∗).

The possible poles occur at indicial roots of R, so the first possibility would occur at
ζ = δ0(α), and by hypothesis this is the only potential indicial root with real part less than
or equal to δ0(α+ ε). However we know that

v(s, y, z) =
1

2π

∫
η=δ0(α)

Mv(ξ, y, z)s−iζ dξ

so in particular (as 1/ξ2 is not integrable) Mv does not have any poles on this line. Hence

Mv(ζ) = I(R; iζ)−1 ( M(Hv + h)(ζ))

as holomorphic functions {η < δ0(α+ ε)} → L2(dvolZ ;H−1(dy)⊗ Λ∗)

and we conclude that
v ∈ sεL2(sf0dsdvolZ ;H−1(dy)⊗ Λ∗).

(2) This follows as in [41, Corollary 7.19] by analyzing the Mellin transform. Without loss
of generality we can arrange, by conjugatingR with an appropriate power of s, to work with
the measure 1

s (dsdy dvolZ). We will assume, for the duration of the proof, that this has been
done without reflecting it in the notation. This has the advantage that the Parseval formula
for the Mellin transform has the form(3)∫ ∞

0

g1(s)g2(s)
ds

s
=

∫
η=C

Mg1(ζ) Mg2(−ζ) dξ

with C chosen so that the integral on the right makes sense.

(3) For the measure sf0 ds the Parseval formula for the Mellin transform takes the form∫∞
0

g1(s)g2(s)sf0 ds =
∫
η=C

Mg1(ζ) Mg2(−(f0 + 1)i− ζ) dξ.
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Notice that from knowing u,w ∈ s−εL2
iie and R(u), Rt(w) ∈ sεL2

iie the respective Mellin
transforms are defined on the half-planes

M(w)(ζ) on {η ≤ −ε}, M(Ru)(−ζ) on {η ≥ −ε}
M(Rtw)(ζ) on {η ≤ ε}, M(u)(−ζ) on {η ≥ ε}

so that a priori there is in each case only one choice for the constantC appearing in Parseval’s
formula. More precisely, C = −ε for the first pair and C = ε for the second pair.

Using part 1) of this lemma we know we can extend

M(u)(−ζ) to {η ≥ −ε}

albeit with a loss in tangential regularity. Fortunately this loss in tangential regularity is
compensated by a gain in tangential regularity in M(Rtw) in this same region. Indeed,
since w ∈ s−εH2

pie, we know that Rtw ∈ sεH1
pie hence we have ∂yRtw ∈ s−1+εL2

iie. It
follows that the Mellin transform of ∂yRtw is a holomorphic map from {η < −1 + ε}
into L2(dy dvolZ ; Λ∗) and hence on this same half-plane M(Rtw) maps holomorphically
into L2(dvolZ , H

1(dy)⊗Λ∗). Again applying Calderón’s complex interpolation method, we
conclude that

(5.21) M(Rtw)(ζ) ∈ L2(dz,Hε−η) for ε− 1 ≤ η ≤ ε.

The same reasoning applies to w.
Thus if we start out with 〈u,Rtw〉 which we can write as∫∫

η=ε

M(Rtw)(ζ) M(u)(−ζ) dξ dy dvolZ ,

we can deform the contour from {η = ε} to {η = −ε} and throughout this deformation the
integrand stays holomorphic with the loss in tangential regularity of M(u) exactly compen-
sated by a gain in regularity by M(Rtw), i.e. the integrand makes sense as a pairing through-
out the deformation. Moreover the integrand is holomorphic in this region and so the value
of the integral does not change during the deformation. Hence we can write 〈u,Rtw〉 as∫∫

η=−ε
M(Rtw)(ζ) M(u)(−ζ) dξ dy dvolZ .

Now integrating each term by parts we write this as∫∫
η=−ε

M(w)(ζ) M(Ru)(−ζ) dξ dy dvolZ ,

which by another application of Parseval’s formula we recognize as 〈w,Ru〉.

5.8. End of induction: ðdR is essentially self-adjoint and Fredholm

Our next task is to use the information gleaned in the previous section to show that
elements of the maximal domain of ðdR as an operator on L2

iie(X; iieΛ∗X) are automatically
in ρεL2

iie,Γ(X; iieΛ∗X).

P 5.9. – Up to rescaling suitably the metric, the following is true.
1) Let u be in the maximal domain of ðdR as an operator on L2

iie(X; iieΛ∗X) then for any
ε ∈ (0, 1), u ∈ ρεH1

iie(X; iieΛ∗X).
2) The maximal domain Dmax(ðdR) is compactly embedded in L2

iie.
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Proof. – We can immediately localize and assume that u has support in a locally trivial-
ized neighborhood U × C(Z) of the highest depth stratum.

We begin with the following intermediate result.

P 5.10. – Let u have compact support in U × C(Z) and lie in the maxi-
mal domain of ðdR as an operator on L2

iie(X; iieΛ∗X). Then, for any ε ∈ (0, 1), we have
u ∈ xεL2

iie(X; iieΛ∗X).

Proof. – Fix ε0 ∈ (0, 1) small enough such that

{<ζ + f
2 + 1

2 : ζ ∈ specb(R)} ∩ [−1/2− ε0,−1/2 + ε0] ⊆ {−1/2}.

Let u ∈ s−1/2L2
iie(Z × TqY

+; iieΛ∗) satisfy Nq(P0)(u) ∈ s1/2L2
iie(Z × TqY

+; iieΛ∗);
by Proposition 5.3, we only need check that u ∈ s−1/2+ε0L2

iie(Z × TqY +; iieΛ∗). Fix such
a u, and write L2

iie(Z×TqY
+; iieΛ∗) in place of L2(q).

Applying 5.5 and 5.7, we know that R = Nq(P0) is bijective as a map from s−
1
2 +ε0L2(q)

to itself (on its maximal domain). Thus Rt is certainly surjective from s−
1
2−ε0L2(q) (on its

minimal domain).

LetG be the bounded generalized inverse ofRt;G is a bounded map from s−1/2−ε0L2(q)

to itself, with image contained in the domain of Rt, and satisfies

RtG = Ids−1/2−ε0L2(q) .

Let φ be any element of s−1/2+ε0H1
pie(Z × TqY +; iieΛ∗). Then v = Gφ satisfies

v ∈ s−1/2−ε0L2(a), Rtv = RtGφ = φ ∈ s−1/2+ε0L2(q),

the latter statement and elliptic regularity allows us to strengthen the former to
v ∈ s−1/2−ε0H2

pie(Z × TqY +; iieΛ∗). On the other hand, we know that Ru ∈ s1/2L2(q) ⊂
s−1/2+ε0L2(q), so by part 2) of Lemma 5.8 (with α = −1/2) we conclude that

〈Ru, v〉 =
〈
Rtv, u

〉
.

But then we also have

(5.22) 〈Ru, v〉 = 〈Ru,Gφ〉 =
〈
GtRu, φ

〉
where we recall that Ru ∈ s1/2L2(q) ⊂ s−1/2+ε0L2(q), Gφ ∈ s−1/2−ε0L2(q) and where Gt

denotes the functional analytic transpose of the bounded operator G; Gt acts continuously
on s−1/2+ε0L2(q), so in fact GtRu ∈ s−1/2+ε0L2(q).

Moreover, we have:

(5.23) 〈Ru, v〉 =
〈
Rtv, u

〉
=
〈
RtGφ, u

〉
= 〈φ, u〉 .

By comparing the last terms of (5.22) and (5.23) we see that 〈u−GtRu, φ〉 = 0 and since φ
was arbitrary we finally get: u = GtRu. Therefore u ∈ s−1/2+ε0L2(q).

Next, taking ε1 ∈ (0, 1) small enough such that

{<ζ + f
2 + 1

2 : ζ ∈ specb(R)} ∩ [−1/2 + ε0 − ε1,−1/2 + ε0 + ε1] = ∅ ⊆ {−1/2 + ε0},

we can repeat the argument above and conclude u ∈ s−1/2+ε0+ε1L2(q); continuing in this
way we conclude that u ∈ s−1/2+εL2(q) for any ε ∈ (0, 1) as required.
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Proof of Proposition 5.9. 1) Proceed by induction on depth. For depth zero, there is nothing
to prove. Let k > 0 and assume that the result is true for any Witt space of depth less than k.
If u ∈ Dmax(ðdR) has support in a locally trivialized neighborhood U×C(Z) at the highest
depth stratum, then Proposition 5.10 gives the stated decay and regularity in the final radial
variable. Since the link Z has depth k − 1, we already know the result for it.

2) This follows since ρεH1
iie(X; iieΛ∗X) is compactly embedded in L2

iie

We now know that elements of the maximal domain have some ‘extra’ degree of vanishing,
and we can then apply an argument of Gil-Mendoza [19].

P 5.11 (Gil-Mendoza). – If Dmax(ðdR) ⊆ ρCL2
iie(X; iieΛ∗X) for some

C > 0, then, as an operator on L2
iie(X; iieΛ∗X),

Dmax(ðdR) ∩
⋂
ε>0

ρ1−εL2
iie(X; iieΛ∗X) ⊆ Dmin(ðdR).

R 5.3. – Since we have actually shown not only that

Dmax(ðdR) ⊆ ρCH1
iie(X; iieΛ∗X)

but in fact
Dmax(ðdR) ⊆

⋂
ε>0

ρ1−εH1
iie(X; iieΛ∗X),

this proposition implies Dmax(ðdR) = Dmin(ðdR).

Proof. – We point out the following simple consequence of the formal self-adjointness
of ðdR and the definitions of the minimal/maximal domains and weak derivatives:

L 5.12. – An element u ∈ Dmax(ðdR) is in Dmin(ðdR) if and only if

(5.24) (ðdRu, v) = (u,ðdRv), for every v ∈ Dmax(ðdR).

Proof. – For any operator D with formal adjoint D∗ one has

u ∈ D(Dmin) ⇐⇒ u ∈ D
(
((D∗)max)

∗)
⇐⇒ 〈Du, v〉 = 〈u,D∗v〉 for every v ∈ D((D∗)max).

If D is symmetric so that D∗ = D, then this is (5.24).

Let u ∈ Dmax(ðdR) ∩
⋂
ε>0 ρ

1−εL2
iie(X; iieΛ∗X), so

u ∈
⋂
ε>0

ρ1−εH1
iie(X; iieΛ∗X).

Set un = ρ1/nu for n ∈ N, so that for each n, un ⊆ ρH1
iie(X; iieΛ∗), and, for every ε ∈ (0, 1),

(5.25) un → u in ρ1−εH1
iie(X; iieΛ∗) and ðdRun → ðdRu in ρ−εL2

iie(X; iieΛ∗).

Let ε ∈ (0, 1) so that Dmax(ðdR) ⊆ ρεH1
iie(X; iieΛ∗). Then, for any v ∈ Dmax(ðdR), (5.25)

implies

(ðdRun, v)L2 = (ρεðdRun, ρ
−εv)L2 → (ρεðdRu, ρ

−εv)L2 = (ðdRu, v)L2 ,

and (un,ðdRv)→ (u,ðdRv).

Moreover, by the previous Lemma, un ∈ Dmin(ðdR) implies (ðdRun, v) = (un,ðdRv).
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It follows that (ðdRu, v) = (u,ðdRv) for every v ∈ Dmax(ðdR) and hence u ∈ Dmin(ðdR).

Altogether, we have now proved Theorem 1.1. We summarize for the benefit of the reader.

Proof. – Parts 1) and 2) are direct consequences of the last proposition. Let us show
that ðdR is self-adjoint on its maximal domain. Denote by ðdR,max the operator ðdR on
its maximal domain. If v is in the domain of ðdR,max then integration by parts, which is
allowed because of the extra vanishing, implies that v is in the domain of (ðdR,max)∗ and
that ðdR,maxv = (ðdR,max)∗v. Conversely, let v lie in the domain of (ðdR,max)∗. Observe that
∀u ∈ C∞c , 〈ðdRu, v〉 = 〈u,ðdRv〉, with ðdR acting as a distribution on v. From the definition
of adjointness we also know that 〈ðdRu, v〉 = 〈u, (ðdR,max)∗v〉 and since this is true for all
u ∈ C∞c we infer that ðdRv is in L2

iie. Indeed, by definition, (ðdR,max)∗v ∈ L2
iie. Thus v is in

the domain of ðdR,max and ðdR,maxv = (ðdR,max)∗v. This proves that ðdR,max is self-adjoint.
To prove 3), since ðdR is self-adjoint, (i Id + ðdR) is invertible. Since Dmax(ðdR) is com-

pactly embedded into L2
iie(X; iieΛ∗X), (i Id + ðdR)−1 defines a parametrix for ðdR acting

on Dmax(ðdR) with compact reminder.
Finally, for 4), since ðdR is Fredholm, there exists ε > 0 such that (ε Id+ðdR) is invertible.

Since the maximal domain is compactly embedded inL2
iie, (ε Id+ðdR)−1 is compact and self-

adjoint. Thus, the spectrum of (ε Id + ðdR)−1 is discrete with finite multiplicity. Therefore,
the spectrum of ðdR is discrete and has finite multiplicity.

6. The signature operator on Witt spaces

We now turn from the de Rham operator to the signature operator, first on forms with
scalar coefficients and then with C∗-algebra coefficients. We show first that these are Fred-
holm operators, but more importantly, that they define classes in the groups K∗(“X) and
K∗(C

∗Γ), respectively. The index of these operators is independent of the choice of metric
and defines a topological invariant. We will show later that this class enjoys even stronger
properties: it is a Witt bordism invariant, a stratified homotopy invariant and it is equal,
rationally, to a topologically defined invariant, the symmetric signature.

6.1. The signature operator ðsign

If X is even-dimensional, the Hodge star induces a natural involution on the differential
forms on X,

I : Ω∗(X)→ Ω∗(X), I 2
= Id

whose +1,−1 eigenspaces are known as the set of self-dual, respectively anti-self dual, forms
and are denoted Ω∗+, Ω∗−. The involution I extends naturally to iieΩ∗(X) and with respect
to the splitting iieΩ∗(X) = iieΩ∗+ ⊕ iieΩ∗−, the de Rham operator decomposes

ðdR =

(
0 ð−sign

ð+
sign 0

)
where

ð+
sign = d+ δ : iieΩ∗+(X)→ iieΩ∗−(X), ð−sign = (ð+

sign)∗.
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If instead the manifold X is odd-dimensional, the signature operator of an (adapted) edge
iterated metric is

ðsign = −i(d I + I d) = −i I (d− δ) = −i(d− δ) I .

We point out for later use that in either case, given a continuous map r : “X → BΓ, we
also obtain a twisted Mishchenko-Fomenko signature operator ð̃sign acting on sections of
the bundle iieΛ∗Γ(X).

T 6.1. – Up to rescaling suitably the metric the following is true. If “X satisfies (5.4)
for all strata, then the iterated incomplete edge signature operator ðsign is essentially self-adjoint
with maximal domain contained in⋂

ε>0

ρ1−εH1
iie(X; iieΛ∗X).

Its unique self-adjoint extension is Fredholm on its maximal domain endowed with the graph-
norm; moreover it has discrete L2-spectrum of finite multiplicity.

Proof. – If X is even-dimensional, it is immediate to see that

Dmin(ð+
sign) = Dmin(ðdR) ∩ L2

iie(X; iieΛ∗+(X)),

Dmax(ð+
sign) = Dmax(ðdR) ∩ L2

iie(X; iieΛ∗+(X))

so the result follows from the corresponding results for ðdR.

For X odd-dimensional, we point out that one can characterize the maximal domain
of d−δ through the same analysis used for d+δ. Alternately, we can use the result for d+δ to
deduce it for d− δ as follows. As explained above, a byproduct of our results is the existence
of a strong Kodaira decomposition

L2
iieΩ∗ = L2 H ⊕ Image d⊕ Image δ

where L2 H is the intersection of the null spaces of d and δ. The de Rham operator d + δ

decomposes into

(d : Image δ → Image d)⊕ (δ : Image d→ Image δ) ,

hence d and δ individually have closed range and

Dmax(ðdR) ∩ Image δ = Dmax(d) ∩ Image δ

Dmax(ðdR) ∩ Image d = Dmax(δ) ∩ Image d

hence i(d − δ) has closed range with domain contained in (hence, by symmetry, equal to)
Dmax(ðdR). Applying Proposition 5.11 to i(d − δ) then shows that it too is essentially self-
adjoint.
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6.2. The K-homology class [ðsign] ∈ K∗(“X)

The results proved so far for the signature operator ðsign on a Witt space “X allow one
to define the K-homology class [ðsign] ∈ K∗(“X) = KK∗(C(“X),C). The K-homology
signature class already appears in the work of Moscovici-Wu [47]; the definition there is based
on the results of Cheeger.

Recall that an even unbounded Fredholm module for the C∗-algebra C(“X) is a pair
(H,D) such that:

– H is a Hilbert space endowed with a unitary ∗-representation of C(“X); D is a self-
adjoint unbounded linear operator on H;

– there is a dense ∗-subalgebra A ⊂ C(“X) such that ∀a ∈ A the domain ofD is invariant
by a and [D, a] extends to a bounded operator on H;

– (1 +D2)−1 is a compact operator on H;
– H is equipped with a grading τ = τ∗, τ2 = I, such that τf = fτ and τD = −Dτ .

An odd unbounded Fredholm module is defined omitting the last condition.

An unbounded Fredholm module defines a Kasparov (C(“X),C)-bimodule and thus an
element in KK∗(C(“X),C). We refer to [3] [6] for more on this foundational material.

Recall that adapted edge iterated metrics were defined in Proposition 5.4. The following
theorem already appears in [47], where it is proved using Cheeger’s results. Here we give a
proof using our approach.

T 6.2. – The signature operator ðsign associated to a Witt space “X endowed with
an adapted edge iterated metric g defines an unbounded Fredholm module for C(“X) and thus a
class [ðsign] ∈ KK∗(C(“X),C), ∗ ≡ dimX mod 2. Moreover, the class [ðsign] does not depend
on the choice of the adapted edge iterated metric on “X.

Proof. – We take H = L2
iie(X; iieΛ∗X), endowed with the natural representation

of C(“X) by multiplication operators. We take D as the unique closed self-adjoint extension
of ðsign. These data depend of course on the choice of the adapted edge iterated metric. We
take A equal to the space of Lipschitz functions on “X with respect to g; A does not depend
on the choice of g, since two adapted edge iterated metrics are quasi-isometric. Finally, in
the even dimensional case we take the involution defined by I . All the conditions defining
an unbounded Kasparov module are easily proved using the results of the previous section:
indeed, if f is Lipschitz then it is elementary to see that multiplication by f sends the max-
imal domain of ðsign into itself; moreover [f, ðsign] is Clifford multiplication by df which
exists almost everywhere and is an element in L∞(“X); in particular [f, ðsign] extends to a
bounded operator on H; finally we know that (1 +D2)−1 is a compact operator (indeed, we
proved this is true for (±i+D)−1). Thus there is a well defined class KK∗(C(“X),C) which
we denote simply by [ðsign]; this class depends a priori on the choice of the metric g. Recall
however that two adapted edge iterated metrics g0 and g1 are joined by a path of adapted
edge iterated metrics gt. Let ð0

sign and ð1
sign be the corresponding signature operators, with

domains in H0 and H1. Proceeding as in the work of Hilsum on Lipschitz manifolds [23]
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one can prove that the 1-parameter family (Ht,ðtsign) defines an unbounded operatorial
homotopy; using the homotopy invariance of KK-theory one obtains

[ð0
sign] = [ð1

sign] in KK∗(C(“X),C) .

We omit the details since they are a repetition of the ones given in [23].

6.3. The index class of the twisted signature operator ð̃sign

Let “X be a Witt space endowed with an adapted edge iterated metric. Assume now that
we are also given a continuous map r : “X → BΓ and let Γ→ “X ′ → “X be the Galois Γ-cover
induced by EΓ→ BΓ. We consider the Mishchenko bundle›C∗rΓ := C∗rΓ×

Γ

“X ′,
and the signature operator with values in the restriction of ›C∗rΓ to X, which we denote
by ð̃sign.

P 6.3. – The twisted signature operator ð̃sign is essentially self-adjoint
as an operator on L2

iie,Γ(X; iieΛ∗ΓX), with maximal domain contained in
⋂
ε>0 ρ

1−εH1
iie,Γ(X; iieΛ∗ΓX)

which is in turn C∗rΓ-compactly included in the Hilbert C∗rΓ-module L2
iie,Γ(X; iieΛ∗ΓX).

Proof. – We briefly point out how the proof given for ðdR and ðsign extends to the case
of ð̃dR and ð̃sign. Recall that a C∗rΓ-distribution on X = reg (“X) is a C−linear form

T : C∞c (reg (“X), iieΛ∗ΓX)→ C∗rΓ

satisfying the following property. For any compact K ⊂ reg (“X), there exists a finite set S of
elements of Diff∗ie,Γ such that:

∀u ∈ C∞K (reg (“X), iieΛ∗ΓX), ‖〈T ;u〉‖C∗rΓ ≤ sup
Q∈S
‖(Qu)‖L2

iie,Γ
.

Of course, any element of L2
iie,Γ(X; iieΛ∗ΓX) defines a C∗rΓ-distribution on reg (“X). It is

clear that ð̃dR sends L2
iie,Γ(X; iieΛ∗ΓX) into the space of C∗rΓ-distributions. Therefore, the

notion of maximal domain for ð̃dR is defined. The notion of minimal domain is also well
defined (this is simply the closure of C∞c with respect to the norm ‖u‖ + ‖ð̃dRu‖). Notice
that these two extensions are closed. Our first task is to show that these two extensions
coincide. To this end we shall make use of the fundamental hypothesis that the reference
map r : X → BΓ extends continuously to the whole singular space “X. Therefore, for any
distinguished neighborhood W ' Rb × C(Z), the induced Γ-coverings over W and over Z
are trivial. This implies that for any q ∈ Y, Nq(ð̃dR) is conjugate to Nq(ðdR)⊗ Id

C̃∗rΓ
. Once

this has been observed we have, immediately, that Proposition 5.3 and Lemma 5.8 extend
to the case of ð̃dR. Then, Proposition 5.10 also extends easily to the present case showing
that the maximal domain of ð̃sign is included in

⋂
ε>0 ρ

1−εH1
iie,Γ(X; iieΛ∗ΓX). Once the extra

vanishing is obtained, we can apply the argument given in the proof of Theorem 1.1 in order
to show that the maximal extension is in fact self-adjoint. The argument of Gil-Mendoza can
also be extended, showing the equality of the maximal and the minimal domain. The details
of all this are easy and for the sake of brevity we omit them. Finally, proceeding as in [35],
one can prove that ρεH1

iie,Γ(X; iieΛ∗ΓX) is C∗rΓ-compactly included into L2
iie,Γ(X; iieΛ∗ΓX).
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The proposition is proved for ð̃dR. The extra step needed for the signature operator is proved
as in Theorem 6.1.

From now on we shall only consider the closed unbounded self-adjoint C∗rΓ-operator of
Proposition 6.3 and with common abuse of notation we continue to denote it by ð̃sign.

We now proceed to show the following fundamental

P 6.4. – The operator ð̃sign is a regular operator. Consequently (i± ð̃sign) and
(1 + ð̃2

sign) are invertible.

Proof. – Recall that a closed unbounded self-adjoint operatorD on a HilbertC∗rΓ-mod-
ule is said to be regular if 1 +D2 is surjective. One can show, see [33], thatD is regular if and
only if 1 +D2 has dense image if and only if (i±D) has dense image if and only if (i±D)

is surjective. Moreover, if D is regular then both (i ±D) and 1 + D2 have an inverse. For a
simple example of an unbounded self-adjoint operator on a Hilbert module such that (i+D)

and (i−D) are not invertible see [24, page 415].

We shall prove that our operator is regular by employing unpublished ideas of Georges
Skandalis, explained in detail in work of Rosenberg-Weinberger [52]. We have seen in the
previous subsection that ðsign defines an unbounded Kasparov (C(“X),C)-bimodule and
thus a class [ðsign] ∈ KK∗(C(“X),C). Consider now

E := L2
iie(X; iieΛ∗X)⊗C C

∗
rΓ ;

tensoring ðsign with IdC∗rΓ we obtain in an obvious way an unbounded Kasparov

(C(“X) ⊗ C∗rΓ, C∗rΓ)-bimodule that we will denote by ( E, D). For later use we denote
the corresponding KK-class as

(6.1) [[ðsign]] ∈ KK∗(C(“X)⊗ C∗rΓ, C∗rΓ).

Consider A := C(“X)⊗ C∗rΓ and set

A := {a ∈ A : a(Dom D) ⊂ Dom D and [a, D] extends to an element of L( E)}.

It is a non-trivial result ([52]) that A is a dense ∗-subalgebra of A stable under holomorphic
functional calculus. Consider now the Mishchenko bundle ›C∗rΓ and its continuous sections
C0(“X;›C∗rΓ) =: P . It is obvious that P is a finitely generated projective rightA-module. The
result cited above, together with Karoubi density theorem ([28] exercise II.6.5), implies that
there exists a finitely generated projective right A-module P such thatP = P⊗ AA. Consider
for ξ ∈ P the operator Tξ : E→ P“⊗A E defined by Tξ(η) := ξ⊗ η. Tξ is a bounded operator
of C∗rΓ Hilbert modules with adjoint T ∗ξ . Recall now, see [52], that a D-connection in the

present context is a symmetric C∗rΓ-linear operator ‹D‹D : P ⊗ A Dom( D) −→ P“⊗A E

such that ∀ξ ∈ P the following commutator, defined initially on (Dom( D))⊕ P⊗ A Dom( D),
extends to a bounded operator on E⊕ P“⊗A E:[(

D 0

0 ‹D) ,( 0 T ∗ξ

Tξ 0

)]
.
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Rosenberg and Weinberger have proved [52] that every D-connection is a self-adjoint
regular operator. We can end the proof of the present proposition as follows: first we observe
that as C∗rΓ Hilbert modules P“⊗A E = L2

iie,Γ(X; iieΛ∗ΓX); next we consider ð̃sign and prove
the following.

L 6.5. – The operator ð̃sign defines a D-connection.

Proof. – It will suffice to prove the following. Let U be an open subset of X over whichfiC∗rΓ is trivial. Then the restriction of ξ ∈ P to U is a finite sum of terms of the form θ ⊗ u
where θ is a flat section and u is a C1−function. So we shall assume that ξ = θ⊗u. Then for
any η ∈ L2

iie(U ; iieΛ∗X|U )⊗ C∗rΓ, one has:

(ð̃sign ◦ Tξ − Tξ ◦ D)(η) = θ ⊗ c(du)η + θ ⊗ u(ð̃sign − D)(η),

where cl (du) is a Clifford multiplication. Recall that the restrictions to U of ð̃sign and
D are differential operators of order one having the same principal symbol. Therefore,
(ð̃sign ◦ Tξ − Tξ ◦ D) is bounded on L2

iie(U ; iieΛ∗X|U ) ⊗ C∗rΓ. One then gets immediately
the lemma by using a partition of unity.

Finally, we check easily that P⊗ A Dom( D) ⊂ Dommax(ð̃sign). Since (i+ ð̃sign) has dense
image with domain P⊗ ADom( D), we see that, a fortiori, the image of (i+ð̃sign) with domain
Dommax(ð̃sign) must also be dense.

These two propositions yield at once the following

T 6.6. – The twisted signature operator ð̃sign and the C∗rΓ-Hilbert module
L2

iie,Γ(X; iieΛ∗ΓX) define an unbounded Kasparov (C, C∗rΓ)-bimodule and thus a class
in KK∗(C, C∗rΓ) = K∗(C

∗
rΓ). We call this the index class associated to ð̃sign and denote

it by Ind(ð̃sign) ∈ K∗(C∗rΓ).
Moreover, if as in (6.1) we denote by [[ðsign]] ∈ KK∗(C(“X) ⊗ C∗rΓ, C∗rΓ) the class obtained
from [ðsign] ∈ KK∗(C(“X),C) by tensoring withC∗rΓ, then Ind(ð̃sign) is equal to the Kasparov
product of the class defined by Mishchenko bundle [›C∗rΓ] ∈ KK0(C, C(“X) ⊗ C∗rΓ) with
[[ðsign]]:

(6.2) Ind(ð̃sign) = [›C∗rΓ]⊗ [[ðsign]].

In particular, the index class Ind(ð̃sign) does not depend on the choice of the adapted edge
iterated metric.

Proof. – We already know that ð̃sign is self-adjoint regular and Z2-graded in the even
dimensional case. It remains to show that the inverse of (1 + ð̃2

sign) is a C∗rΓ-compact

operator. However, the domain of ð̃sign is compactly included in L2
iie,Γ(X; iieΛ∗ΓX); thus (i+

ð̃sign)−1 and (−i+ ð̃sign)−1 are both compact. It follows that (1+ ð̃2
sign)−1 is compact. Thus

(ð̃sign, L
2
iie,Γ(X; iieΛ∗ΓX)) defines an unbounded Kasparov (C, C∗rΓ)-bimodule as required.

The equality Ind(ð̃sign) = [›C∗rΓ] ⊗ [[ðsign]] is in fact part of the theorem, attributed to
Skandalis in [52], on D-connections. Finally, since we have proved that [ðsign], and thus
[[ðsign]], is metric independent, and since [›C∗rΓ] is obviously metric independent, we conclude
that Ind(ð̃sign) has this property too. The theorem is proved.
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C 6.7. – Let β : K∗(BΓ) → K∗(C
∗
rΓ) be the assembly map; let

r∗[ðsign] ∈ K∗(BΓ) be the push-forward of the signature K-homology class. Then

(6.3) β(r∗[ðsign]) = Ind(ð̃sign) in K∗(C∗rΓ).

Proof. – Since Ind(ð̃sign) = [›C∗rΓ] ⊗ [[ðsign]], this follows immediately from the very
definition of the assembly map. See [29] [30].

7. Witt bordism invariance

Let “Y be an oriented odd dimensional Witt space with boundary ∂“Y = “X. We assume
that “Y is a smoothly stratified space having a product structure near its boundary. We
endow “Y with an edge iterated metric having a product structure near ∂“Y = “X and
inducing an adapted edge iterated metric g (Proposition 5.4) on “X.Consider a reference map
r : “Y → BΓ; its restriction to “X and g induces a C∗rΓ−linear signature operator on “X. In
this section only we shall be very precise and denote this operator by ð̃sign(“X).

T 7.1. – We have Ind ð̃sign(“X) = 0 in K0(C∗rΓ)⊗Z Q.

Proof. – We follow [38, Section 4.3] and Higson [22, Theorem 5.1]. Denote by “Y ′ → “Y
and “X ′ → “X the two Γ−coverings associated to the reference map r : “Y → BΓ.

The analysis of Section 7 shows that the operator ð̃sign(“X) induces a class [ð̃sign(“X)] in

the Kasparov group KK0(C0(∂“Y ), C∗rΓ). In terms of the constant map π∂Ŷ : ∂“Y → {pt},
one has:

Ind ð̃sign(“X) = π∂Ŷ∗ ([ð̃sign(“X)]) ∈ KK0(C, C∗rΓ) ' K0(C∗rΓ).

Now let C
∂Ŷ

(“Y ) ⊂ C(“Y ) denote the ideal of continuous functions on “Y vanishing on the

boundary. Let i : ∂“Y → “Y denote the inclusion and consider the long exact sequence
in KK(·, C∗rΓ) associated to the semisplit short exact sequence:

(7.1) 0→ C
∂Ŷ

(“Y )
j→ C(“Y )

q→ C(∂“Y )→ 0

(see Blackadar [6, page 197]). In particular, we have the exactness of

KK1(C
∂Ŷ

(“Y ), C∗rΓ)
δ→ KK0(C(∂“Y ), C∗rΓ)

i∗→ KK0(C(“Y ), C∗rΓ)

and thus i∗ ◦ δ = 0. Recall that the conic iterated metric on “Y (with product structure
near ∂“Y = “X) allows us to define a C∗rΓ−linear twisted signature operator ð̃sign on “Y with
coefficients in the bundle “Y ′×ΓC

∗
rΓ→ “Y .This twisted signature operator allows us to define

a class [ð̃sign] ∈ KK1(C
∂Ŷ

(“Y ), C∗rΓ).

L 7.2. – One has δ[ð̃sign] = [2ð̃sign(“X)].

Proof. – We are using the proof of Theorem 5.1 of Higson [22]. We can replace “Y by a
collar neighborhood W (' [0, 1[×∂“Y ). Consider the differential operator d :

d =

(
0 −i ddx
−i ddx 0

)
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acting on [0, 1]. It defines a class in KK1(C0(0, 1), C∗rΓ). Recall that the Kasparov product
[d]⊗ · induces an isomorphism:

[d]⊗ · : KK0(C(∂“Y ), C∗rΓ)→ KK1(C
∂Ŷ

(W ), C∗rΓ).

As in [22], the connecting map δ :

KK1(C
∂Ŷ

(W ), C∗rΓ)
δ→ KK0(C(∂“Y ), C∗rΓ)

is given by the inverse of [d] ⊗ ·. Denote by DW the restriction of ð̃sign to W and recall
that “X = ∂“Y is even dimensional. Then one checks (using [22] and [48, page 296]) that the
KK−class [ DW ] is equal to [d]⊗2[ð̃sign(“X)], and one finds that δ[ DW ] = 2[ð̃sign(“X)] which
proves the result.

Let πŶ : “Y → {pt} denote the constant map. By functoriality, one has:

π∂Ŷ∗ = πŶ∗ ◦ i∗.

Since i∗ ◦ δ = 0, the previous lemma implies that:

2 Ind ð̃sign(“X) = π∂Ŷ∗ ([2ð̃sign(“X)]) = π∂Ŷ∗ ◦ δ([ DW ]) = πŶ∗ ◦ i∗ ◦ δ([ DW ]) = 0.

Therefore, Theorem 7.1 is proved.

We shall denote by ΩWitt,s
∗ (BΓ) the bordism group in the category of smoothly stratified

oriented Witt spaces. This group is generated by the elements of the form [“X, r : “X → BΓ]

where [“X, r : “X → BΓ] is equivalent to the zero element if “X is the boundary of a smoothly
stratified Witt oriented space “Y (as in Theorem 7.1) such that the map r extends continuously
to “Y . It follows that the index map

(7.2) ΩWitt,s
∗ (BΓ)→ K∗(C

∗
rΓ)⊗Q,

sending [“X, r : “X → BΓ] ∈ ΩWitt,s
∗ (BΓ) to the higher index class Ind(ð̃sign) (for the twisting

bundle r∗EΓ ×Γ C
∗
rΓ), is well defined. As in the closed case, see [53], it might be possible

to refine this result and show that the index map actually defines a group homomorphism
ΩWitt,s
∗ (BΓ)→ K∗(C

∗
rΓ)

Recall that Siegel’s Witt-bordism groups ΩWitt
∗ (BΓ) are given in terms of equivalence

classes of pairs (“X,u : “X → BΓ), with “X a Witt space which is not necessarily smoothly
stratified.

We also recall that, working with PL spaces, Sullivan [57] has defined the notion of
connected KO-Homology ko∗ (see also [55, page 1069]). Siegel [55, Chapter 4], building on
work of Sullivan and Conner-Floyd, has shown that the natural map ΩSO

∗ (BΓ) ⊗Z Q →
ΩWitt
∗ (BΓ)⊗Z Q is surjective by showing that the natural map ΩSO

∗ (BΓ)⊗Z Q→ ko∗(BΓ)⊗Z Q
is surjective and the natural map ([55]) ΩWitt

∗ (BΓ)⊗ZQ→ ko∗(BΓ)⊗ZQ is an isomorphism.
We need to extend these results for the corresponding groups associated with the category
of smoothly stratified spaces.

P 7.3. – The natural map ΩSO
∗ (BΓ)⊗Z Q→ ΩWitt,s

∗ (BΓ)⊗Z Q is surjective.
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Proof. – Theorem 4.4 of [55] is still valid (by inspection) if one works in the category of
smoothly stratified oriented Witt spaces. Namely, if “X is an irreducible smoothly stratified
Witt space of even dimension > 0 such that w(“X) = 0, with w(“X) ∈W (Q), then “X is Witt
cobordant to zero in the category of smoothly stratified Witt spaces. The arguments of [55,
Chapter 4] show that Siegel’s map:

ΩWitt,s
∗ (BΓ)⊗Z Q→ ko∗(BΓ)⊗Z Q

is an isomorphism and, using the surjectivity of the map

ΩSO
∗ (BΓ)⊗Z Q→ ko∗(BΓ)⊗Z Q,

one gets the proposition.

8. The homology L-class of a Witt space. Higher signatures

The homology L-class L∗(“X) ∈ H∗(“X,Q) of a Witt space “X was defined independently
by Goresky and MacPherson [20], following ideas of Thom [58], and by Cheeger [13]. See
also Siegel [55]. In this paper we shall adopt the approach of Goresky and MacPherson. We
briefly recall the definition: if “X has dimension n, k ∈ N is such that 2k − 1 > n, and N
denotes the ‘north pole’ of Sk, one can show that the map σ : πk(“X) → Z that associates
to [f : “X → Sk] the Witt-signature of f−1( N ) is well defined and a group homomorphism.
Now, by Serre’s theorem, the Hurewicz map πk(“X) ⊗ Q → Hk(“X,Q) is an isomorphism
for 2k − 1 > n and we can thus view the above homomorphism, σ ⊗ IdQ, as a linear func-
tional in Hom(Hk(“X),Q) ' Hk(“X,Q). This defines Lk(“X) ∈ Hk(“X,Q). The restriction
2k − 1 > n can be removed by crossing with a high dimensional sphere in the follow-
ing way. Choose a positive integer ` such that 2(k + `) − 1 > n + ` and k + ` > n.

Then by the above construction, Lk+`(“X × S`) is well defined in Hk+`(“X × S`,Q).

Since k + ` > n, the Künneth Theorem shows that there is a natural isomorphism
I : Hk+`(“X × S`,Q)→ Hk(“X,Q). One then defines: Lk(“X) := I(Lk+l(“X × S`)).

Once we have a homology L-class we can define the higher signatures as follows.

D 9. – Let “X be a Witt space and Γ := π1(“X). Let r : “X → BΓ be a classifying
map for the universal cover. The (Witt-Novikov) higher signatures of “X are the collection of
rational numbers:

(8.1) {〈α, r∗L∗(“X)〉 , α ∈ H∗(BΓ,Q)}.

We set σα(“X) := 〈α, r∗L∗(“X)〉.

The Witt-Novikov higher signatures have already been studied, see for example [14]. If X
is an oriented closed compact manifold and r : X → Bπ1(X) is the classifying map, it is not
difficult to show that

〈α, r∗L∗(X)〉 = 〈L(X) ∪ r∗α, [X]〉 ≡
∫
L(X) ∪ r∗α .

Thus the above definition is consistent with the usual definition of Novikov higher signatures
in the closed case.

The Novikov conjecture in the closed case is the statement that all the higher signatures
{〈L(X) ∪ r∗α, [X]〉 , α ∈ H∗(BΓ,Q)} are homotopy invariants.
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The Novikov conjecture in the Witt case is the statement that the Witt-Novikov higher
signatures {〈α, r∗L∗(“X)〉 , α ∈ H∗(BΓ,Q)} are stratified homotopy invariants. Notice that
the intersection homology is not a homotopy invariant theory; however, it is a stratified
homotopy-invariant theory, see [17].

We shall need to relate the homology L-class of Goresky-MacPherson to the signature
class [ðsign] ∈ K∗(“X).

T 8.1 (Cheeger/Moscovici-Wu). – The topological homology L-class
L∗(“X) ∈ H∗(“X,Q) is the image, under the rationalized homology Chern character, of
the signature K-homology class [ðsign]Q ∈ K∗(“X)⊗Q; in formulæ

(8.2) ch∗[ðsign]Q = L∗(“X) in H∗(“X,Q).

This result is due to Cheeger, who proved it for piecewise flat metric of conic type, and to
Moscovici-Wu, who gave an alternative argument valid also for any metric quasi-isometric
to such a metric [13], [47]. It is worth pointing out here that our metrics do belong to the
class considered in [47]. Notice that Moscovici-Wu prove that the straight Chern character
of [ðsign]Q ∈ K∗(“X) ⊗ Q is equal to L∗(“X) ∈ H∗(“X,Q); the straight Chern character has
values in Alexander-Spanier homology; the equality with L∗(“X) ∈ H∗(“X,Q) is obtained
using the isomorphism between Alexander-Spanier and singular homology [47].

9. Stratified homotopy invariance of the index class: the analytic approach

One key point in all the index theoretic proofs of the Novikov conjecture for closed
oriented manifolds is the one stating the homotopy invariance of the signature index class
in K∗(C

∗
rΓ). By this we mean that if r : X → BΓ as above, f : X ′ → X is a smooth

homotopy equivalence and r′ := r ◦ f : X ′ → BΓ, then the index class, in K∗(C
∗
rΓ),

associated to ð̃sign (i.e., associated to the signature operator onX, ðsign, twisted by r∗EΓ×Γ

C∗rΓ) is equal to the one associated to ð̃′sign (i.e., associated to the signature operator on X ′,
ð′sign, twisted by (r′)∗EΓ×Γ C

∗
rΓ). There are two approaches to this fundamental result:

1. one proves analytically that Ind(ð̃sign) = Ind(ð̃′sign) in K∗(C∗rΓ);
2. one proves that the index class is equal to an a priori homotopy invariant, the

Mishchenko (C∗-algebraic) symmetric signature.

In this section we pursue the first of these approaches. We shall thus establish the stratified
homotopy invariance of the index class on Witt spaces by following ideas from Hilsum-
Skandalis [25], where this property is proved for closed compact manifolds. See also [50].

9.1. Hilsum-Skandalis replacement of f

IfX and Y are closed Riemannian manifolds, and f : X → Y is a homotopy equivalence,
it need not be the case that pull-back by f induces a bounded operator inL2. Indeed, suppose
f is an embedding and φε is a function which equals 1 on the ε tubular neighborhood of the
image of X. The L2-norm of φε is bounded by CεcodimYX and hence tends to zero, while
f∗φε ≡ 1 on X and so its L2 norm is constant. Thus the closure of the graph of f∗, say
over piecewise constant functions, contains an element of the form (0, 1), and is not itself
the graph of an operator.
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On the other hand, if f is a submersion, and the metric on X is a submersion metric,
then f∗ clearly does induce a bounded operator on L2. Since the latter property is a quasi-
isometry invariant, and any two metrics on X are quasi-isometric, it follows that pull-back
by a submersion always induces a bounded operator in L2.

As one is often presented with a homotopy equivalence f and interested in properties
of L2 spaces, it is useful to follow Hilsum and Skandalis [25] and replace pull-back by f
by an operator that is bounded in L2. We refer to this operator as the Hilsum-Skandalis
replacement of f∗ and denote it by HS(f).

Such a map is constructed as follows. Consider a disk bundle πY : DY → Y and the
associated pulled back bundle f∗DY by the map f : X → Y. Denote by πX : f∗DY → X

the induced projection. Then f admits a natural lift D(f) such that

f∗DY
D(f) //

��

DY

��
X

f // Y

commutes. Moreover, we consider a (smooth) map e : DY → Y such that
p = e ◦ D(f) : f∗DY → Y is a submersion, and a choice of Thom form T for πX .
The Hilsum-Skandalis replacement of f∗ is then the map

HS(f) = HS T ,f∗DY ,DY ,e(f) : C∞(Y ; Λ∗) // C∞(X; Λ∗)

u
� // (πX)∗( T ∧ p∗u).

Notice that HS(f) induces a bounded map in L2 because p∗ = (e ◦ D(f))∗ does.

For example, as in [25], one can start with an embedding j : Y → RN and a tubular
neighborhood U of j(Y ) such that j(ζ) +D ⊆ U, and then take DX = X×D, DY = Y ×D,
D(f) = f × id, and e(ζ, v) = τ(ζ + v) where τ : U → Y is the projection. Alternately, one
can take DY to be the unit ball subbundle of TY and e(ζ, v) = expf(ζ)(v). We will extend
the latter approach to stratified manifolds.

In any case, one can show thatHS(f) is a suitable replacement for f∗. Significantly, using
HS(f) we will see that the K-theory classes induced by the signature operators of homotopic
stratified manifolds coincide.

9.2. Stratified homotopy equivalences

Let “X and “Y denote stratified spaces, X and Y their regular parts, and S(X) and S(Y )

the corresponding sets of strata. Following [17] and [31, Def. 4.8.1 ff] we say that a map
f : “X → “Y is stratum preserving if

S ∈ S(“Y ) =⇒ f−1(S) is a union of strata of X

and codimension preserving if also

codimf−1(S) = codimS.

We will say that a map is strongly stratum preserving if it is both stratum and codimension
preserving.
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In these references, a stratum-preserving homotopy equivalence between stratified spaces
is a strongly stratum preserving map f : “X → “Y such that there exists another strongly
stratum preserving map g : “Y → “X with both f ◦ g and g ◦ f homotopic to the appropriate
identity maps through strongly stratum preserving maps. It is shown that stratum-preserving
homotopy equivalences induce isomorphisms in intersection cohomology.

Notice that the existence of a homotopy equivalence between closed manifolds implies that
the manifolds have the same dimension, so it is natural to impose a condition like strong stra-
tum preserving on stratified homotopy equivalences. We shall also assume that f is a smooth
strongly stratified map, see Definition 4, and that it is a smooth strongly stratified homo-
topy equivalence. (Once again, in the index-theoretic approach to the Novikov conjecture
on closed manifolds, this additional hypothesis of smoothness is also made.)

We shall often omit the reference to the smoothness of f , given that our methods are obviously
suited for these kinds of maps only.

A smooth strongly stratified map lifts, according to Definition 4, to a smooth map between
the resolutions of the stratified spaces f̃ : ‹X → ‹Y preserving the iterated boundary fibration
structures. In particular, f̃ is a b-map and the differential of f̃ sends tangent vectors to the
boundary fibrations of ‹X to tangent vector to the boundary fibrations of ‹Y .

This implies that there exist linear maps

f∗ : C∞(Y ; ieΛ∗)→ C∞(X; ieΛ∗), and f∗ : C∞(Y ; iieΛ∗)→ C∞(X; iieΛ∗),

though, as on a closed manifold, these do not necessarily induce bounded maps in L2.

9.3. Hilsum-Skandalis replacement on complete edge manifolds

Suppose ‹X and ‹Y are both manifolds with boundary and boundary fibrations

φ
X̃

: ∂‹X → H
X̃
, φ

Ỹ
: ∂‹Y → H

Ỹ
.

Let X and Y denote the interiors of ‹X and ‹Y respectively.

Endow ‹Y with a complete edge metric g̃ = ρ−2g (3.2) such that g is adapted in the sense
of Proposition 5.4. Let DY ⊆ eTY be the edge vector fields on Y with pointwise length
bounded by one, and let exp : DY → Y be the exponential map on Y with respect to
the edge metric. The space DY is itself an (open) edge manifold with boundary fibration
φDY : ∂DY → ∂‹Y → H

Ỹ
. Notice that exp extends to a b-map that sends fibers of φD

Ỹ

to fibers of φ
Ỹ

and hence induces a map

exp∗ : eTDY → eTY

which is seen to be surjective.

Let f : ‹X → ‹Y be a smooth b-map that sends fibers of φ
X̃

to fibers of φ
Ỹ

. Pulling back
the bundle DY → Y to X gives a commutative diagram

(9.1) f∗DY
f //

πX

��

DY
πY

��
X

f // Y
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which we use to construct the Hilsum-Skandalis replacement for pull-back by f . Namely,
define e = exp : DY → Y , let T be the pull-back by f of a Thom form for DY , and let

(9.2) HS(f) = (πX)∗( T ∧ p∗) : C∞(Y ; ieΛ∗)→ C∞(X; ieΛ∗)

with p = e ◦ D(f). Observe that p is a proper submersion and hence a fibration. Then, as
above, HS(f) induces a map between the corresponding L2 spaces.

The generalization to manifolds with corners and iterated fibrations structures is straight-
forward: we just replace the edge tangent bundle with the iterated edge tangent bundle.
Indeed, it is immediate that if DY ⊆ ieTY is the set of iterated edge vector fields on Y with
pointwise length bounded by one, the exponential map exp : DY → Y with respect to a
(complete) iterated edge metric induces a map exp∗ : ieTDY → ieTY . That this map is
surjective can be checked locally and follows by a simple induction. Then given a smooth
b-map f : ‹X → ‹Y with the property that, whenever H ∈ M1(‹X) is sent to K ∈ M1(‹Y ),
the fibers of the fibration on H are sent to the fibers of the fibration on K, we end up with a
map

HS(f) : C∞(‹Y , ieΛ∗)→ C∞(‹X, ieΛ∗)

that induces a bounded map between the corresponding L2
ie spaces.

Next, recall that
C∞(‹Y ; iieΛ1) = ρ

Ỹ
C∞(‹Y ; ieΛ1)

where ρ
Ỹ

is a total boundary defining function for ∂‹Y . Hence, if f : ‹X → ‹Y induces

f∗ : C∞(‹Y ; ieΛ1)→ C∞(‹X; ieΛ1), it will also induce a map

f∗ : C∞(‹Y ; iieΛ1)→ C∞(‹X; iieΛ1)

if f∗(ρ
Ỹ

) is divisible by ρ
X̃

. That is, we want f to map the boundary of ‹X to the boundary

of ‹Y (a priori, it could map a boundary face of ‹X onto all of ‹Y ). For maps f coming from
pre-stratified maps, this condition holds and hence the map HS(f) induces a bounded map
between iterated incomplete edge L2 spaces. Of course, once f∗ induces a map on iieΛ1, it
extends to a map on iieΛ∗.

9.4. Stratified homotopy invariance of the analytic signature class

Suppose we have a stratum-preserving smooth homotopy equivalence between stratified
spaces f : “X → “Y . Recall that X and Y denote the regular parts of “X and “Y , respectively.
Recall the map r : “Y → BΓ and the flat bundle V ′ of finitely generatedC∗rΓ-modules over“Y :

V ′ = C∗rΓ×Γ r
∗(EΓ).

Notice that using the blowdown map ‹Y → “Y , V ′ induces a flat bundle, still denoted by V ′

on ‹Y . Consider V = f∗ V ′ the corresponding flat bundle over “X. We have a flat connection
on V ′, ∇ V ′ , over Y (and ‹Y ) and associated differential d V ′ , and corresponding connection
∇ V and differential d V onX (and ‹X). It is straightforward to see that the Hilsum-Skandalis
replacement of f constructed above extends to

HS(f) : C∞(Y ; iieΛ∗ ⊗ V ′)→ C∞(X; iieΛ∗ ⊗ V )

and induces a bounded operator between the corresponding L2 spaces.
We now explain how the rest of the argument of Hilsum-Skandalis extends to this context.
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Suppose (ft)0≤t≤1 : “X → “Y is a homotopy of stratum-preserving smooth homotopy
equivalences, let DY be as above. Assume that (es)0≤s≤1 : DY → Y is a homotopy of
smooth maps such that, for any s ∈ [0, 1], ps = es ◦ D(fs) : f∗sDY → Y induces a
surjective map on iie vector fields. Choose a smooth family of bundle isomorphisms (over
X) As : f∗sDY −→ f∗0 DY , (0 ≤ s ≤ 1), such that A0 = Id . Set T s = A∗s T 0 where T 0

is a Thom form for the bundle f∗0 DY → X. Consider ∇ a flat unitary connection on V ′.
It induces an exterior derivative d V ′ on the bundle ∧∗T ∗‹Y ⊗ V ′. Choose a smooth family
of C∗rΓ−bundle isomorphism Us from the bundle (ps ◦ A−1

s )∗ V ′ → f∗0 DY onto the bundle
p∗0 V ′ → f∗0 DY such thatU0 = Id. Implicit in the statement of the next lemma is the fact that,
for each s ∈ [0, 1], ps ◦ A−1

s induces a morphism from the space of sections of the bundle
V ′ → Y on the space of sections of the bundle (ps ◦A−1

s )∗ V ′ → f∗0 DY .

L 9.1. – Under the above hypotheses and notation, there exists a bounded operator
Υ : L2

iie(Y ; iieΛ∗ ⊗ V ′)→ L2
iie(f∗0 DY ; iieΛ∗ ⊗ p∗0 V ′) such that

(Id⊗ U1) ◦ ( T 0 ∧ (p1 ◦A−1
1 )∗ )− ( T 0 ∧ p∗0) = p∗0(d V ′)Υ + Υd V ′ .

Proof. – We follow Hilsum-Skandalis. Consider the map

H : f∗0 DY × [0, 1]→ Y

(x, s) 7→ H(x, s) = ps ◦A−1
s (x).

Then the required map Υ is defined by, ∀ω ∈ L2
iie(Y ; iieΛ∗ ⊗ V ′),

Υ(ω) =

∫ 1

0

i ∂
∂t

(
Ut ◦ (pt ◦A−1

t )∗F ⊗ ( T 0 ∧H∗ω)
)
dt.

We need to see how this construction handles composition. Recall that given f : ‹X → ‹Y
we are taking DY to be the ie vectors over Y with length bounded by one, D(f) : f∗DY → DY
the natural map (9.1), e : DY → Y the exponential map, p = e ◦ D(f), and T a Thom form
on f∗DY , and then

HS(f)u = (πX)∗( T ∧ p∗u).

Now suppose ‹X, ‹Y , and Z̃ are manifolds with corners and iterated fibration structures,
and ‹X h−→ ‹Y f−→ Z̃

are smooth b-maps that send boundary hypersurfaces to boundary hypersurfaces and the
fibers of boundary fibrations to the fibers of boundary fibrations. Assume that the map
r : “X → BΓ above is of the form r = r1 ◦ f for a suitable map r1 : Ẑ → BΓ. We then
get a flat C∗rΓ−bundle V ′′ over Ẑ (and Z̃) such that V ′ = f∗ V ′′. Denoting the various π·’s
by τ ’s, we have the following diagram

(f ◦ p′)∗DZ
τ1

��

p̃

&&
τ

��

p′′

��

h∗DY
τ2

��

p′

&&

f∗DZ
τ0

��

p

""
X

h // Y
f // Z
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where X, Y, Z are the interiors of ‹X, ‹Y , Z̃, p̃(ζ, ξ, η) = (p′(ζ, ξ), η), and, with T standing
for a Thom form, we define

HS(f) : C∞(Z; iieΛ1 ⊗ V ′′)→ C∞(Y ; iieΛ1 ⊗ V ′),

HS(h) : C∞(Y ; iieΛ1 ⊗ V ′)→ C∞(X; iieΛ1 ⊗ V )

HS(f, h) : C∞(Z; iieΛ1 ⊗ V ′′)→ C∞(X; iieΛ1 ⊗ V ),

HS(f)(u) = (τ0)∗( T τ0 ∧ p∗u),

HS(h)(u) = (τ2)∗( T τ2 ∧ (p′)∗u)

HS(f, h)(u) = τ∗( T τ2 ∧ (p̃)∗ T τ0 ∧ (p′′)∗u).

L 9.2. – HS(f, h) = HS(h) ◦HS(f) and HS(f, h)−HS(f ◦ h) = d V Υ + Υd V ′′

for some bounded operator Υ.

Proof. – For simplicity, we give the proof only in the case Γ = {1}. Using the specific
definitions of τ1, p̃, p′, τ0 one checks easily that (τ1)∗p̃

∗ = (p′)∗(τ0)∗. Therefore, (p̃)∗ T τ0 is
indeed a Thom form associated with τ1. Since p′′ = p ◦ p̃, one gets:

HS(f, h) = (τ2)∗(τ1)∗( T τ2 ∧ p̃∗( T τ0 ∧ p∗)).

Then replacing (τ1)∗p̃
∗ by (p′)∗(τ0)∗ one gets:

HS(f, g) = (τ2)∗( T τ2 ∧ (p′)∗((τ0)∗( T τ0 ∧ (p)∗))) = HS(h) ◦HS(f).

Next, notice that the maps

(t; ζ, ξ, η) 7→ expf(exph(ζ)(tξ))
(η)

are a homotopy between p′′ : (f ◦p′)∗DZ → Z and p̂ : (f ◦h)∗DZ → Z within submersions.
Hence we can use the previous lemma to guarantee the existence of Υ.

Instead of the usual L2 inner product, we will consider the quadratic form

QX : C∞(X; iieΛ∗ ⊗ V )× C∞(X; iieΛ∗ ⊗ V )→ C∗rΓ

QX(u, v) =

∫
X

u ∧ v∗

and also the analogousQY ,QDY ,Qf∗DY . Recall that any element of C∞(X; iieΛ∗⊗ V ) van-
ishes at the boundary of X so that QX is indeed well defined. (We point out that the corre-
sponding quadratic form in Hilsum-Skandalis [25, page 87] is given by i|u|(n−|u|)QX(u, v).)
We denote the adjoint of an operator T with respect toQX (orQY ) by T ′. Thus, for instance,
d′V = −d V .

From Theorem 6.6, we know that the signature data on “X defines an element of
KdimX(C∗rΓ) and similarly for the data on “Y . Hilsum and Skandalis gave a criterion
for proving that two classes are the same which we now employ.

P 9.3. – Consider a stratum-preserving homotopy equivalence f : “X → “Y ,
where dim “X = n is even. Denote still by f the induced map ‹X → ‹Y . The bounded operator

HS(f) : L2
iie(Y ; iieΛ∗ ⊗ V ′)→ L2

iie(X; iieΛ∗ ⊗ V )

satisfies the following properties:
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a) HS(f)d V ′ = d VHS(f) and HS(f)(Dom d V ′) ⊆ Dom d V

b) HS(f) induces an isomorphism HS(f) : ker d V ′/=d V ′ → ker d V /=d V

c) There is a bounded operator Υ on a Hilbert module associated to Y such that
Υ(Dom d V ′) ⊆ Dom d V ′ and Id−HS(f)′HS(f) = d V ′Υ + Υd V ′

d) There is a bounded self-adjoint involution ε onY such that ε(Dom d V ′) ⊆ Dom d V ′ , which
commutes with Id−HS(f)′HS(f) and anti-commutes with d V ′ .

Hence the signature data on “X and “Y define the same element of K0(C∗rΓ).

Proof. – The final sentence follows from (a)-(d) and Lemma 2.1 in Hilsum-Skandalis [25].

In Section 7 we showed that the signature operator has a unique closed extension, it
follows that so do d V and d V ′ (see, e.g., [27, Proposition 11]). Since this domain is the
minimal domain, as soon as we know that an operator is bounded in L2

iie and commutes or
anticommutes with these operators, we know that it preserves their domains.

a) Since HS(f) is made up of pull-back, push-forward, and exterior multiplication by a
closed form, HS(f)d V ′ = d VHS(f).

b) From (a) we know that HS(f) induces a map ker d V ′/=d V ′ → ker d V /=d V . Let h
denote a homotopy inverse of f and consider

HS(h) : L2
iie(X; iieΛ∗ ⊗ V )→ L2

iie(Y ; iieΛ∗ ⊗ V ′).

We know from Lemma 9.2 that HS(f ◦ h) and HS(h) ◦ HS(f) induce the same map in
cohomology and, from Lemma 9.1, that HS(f ◦ h) induces the same map as the identity.
Since the same is true for HS(f ◦ h) we conclude that HS(h) and HS(f) are inverse maps
in cohomology and hence each is an isomorphism.

c) Recall that p : f∗DY → Y , being a proper submersion, is a fibration. Choose a Thom
form ‹T for the fibration πY : DY → Y so that DY (f)∗‹T defines a Thom form for the
fibration πX : f∗DY → X. These two facts allow us to carry out the following computation,
where u ∈ C∞(‹Y ; iieΛ∗ ⊗ V ′) and v ∈ C∞(X; iieΛ∗ ⊗ V ).

QX(HS(f)u, v) = QX
Ä
(πX)∗(DY (f)∗‹T ∧ p∗u), v

ä
= Qf∗DY (DY (f)∗‹T ∧ p∗u, π∗Xv)

= (−1)n(n−|v|)Qf∗DY (p∗u,DY (f)∗‹T ∧ π∗Xv)

= (−1)n(n−|v|)QY (u, p∗(DY (f)∗‹T ∧ π∗Xv)).

Since n is even this shows that HS(f)′v = p∗(DY (f)∗‹T ∧ π∗Xv) and hence

HS(f)′HS(f)u = p∗(DY (f)∗‹T ∧ π∗X(πX)∗((DY (f)∗‹T ∧ p∗u))).

Next one checks easily that, for any differential form ω on DY ,

DY (f)∗π∗Y (πY )∗ω = π∗X(πX)∗DY (f)∗ω

and so, from the identity p∗ = DY (f)∗e∗,

HS(f)′HS(f)u = (e ◦ DY (f))∗(DY (f)∗( ‹T ∧ π∗Y (πY )∗(‹T ∧ e∗u))).
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Now observe that DY (f) : f∗DY → DY , being a homotopy equivalence of manifolds
with corners, sends the relative fundamental class of f∗DY to the relative fundamental class
of DY and so

Qf∗DY (DY (f)∗α,DY (f)∗β) = QDY (α, β).

From this identity, the previous equation, and the fact that e induces a fibration, one checks
easily that

QY (HS(f)′HS(f)u,w) = QY (e∗( ‹T ∧ π∗Y (πY )∗(‹T ∧ e∗u)), w)

and hence

HS(f)′HS(f)u = e∗( ‹T ∧ π∗Y (πY )∗(‹T ∧ e∗u)).

Finally, e is homotopic to πY , and since

(πY )∗( ‹T ∧ π∗Y (πY )∗(‹T ∧ π∗Y u)) = (πY )∗(‹T ∧ π∗Y u) = u,

Lemma 9.1, Id−HS(f)′HS(f) = d V ′Υ + Υd V ′ as required.

d) It suffices to take εu = (−1)|u|u.

R 9.1. – Consider now the case of an odd dimensional Witt space “X endowed
with an edge adapted iterated metric g and a reference map r : “X → BΓ. We have defined
in Section 7 the higher signature index class Ind (ð̃sign) ∈ KK1(C, C∗rΓ) ' K1(C∗rΓ)

associated to the twisted signature operator defined by the data (“X, g, r). Recall that there is
a suspension isomorphism Σ : K1(C∗rΓ) ↔ ‹K0(C∗rΓ ⊗ C(S1)) which is induced by taking
the Kasparov product with the Dirac operator of S1. Consider the even dimensional Witt
space “X × S1 endowed with the obvious stratification and with the reference map

r × IdS1 : “X × S1 → B(Γ× Z) ' BΓ× S1.

As explained in [34, p. 624], [36, §3.2], the suspension of the odd index class
Ind (ð̃sign) ∈ KK1(C, C∗rΓ) ' K1(C∗rΓ) is equal to the even signature index class associated
to the data (“X × S1, g× (dθ)2, r× IdS1). If now f : “X → “Y is a stratified homotopy equiv-
alence of odd dimensional Witt spaces, then f induces a stratified homotopy equivalence
from “X × S1 to “Y × S1. By the previous proposition the signature index classes of “X × S1

and “Y × S1 are the same. Then using the suspension isomorphism Σ, we deduce finally that
the odd signature index classes associated to “X and “Y are the same. Thus, the (smooth)
stratified homotopy invariance of the signature index class is established for Witt spaces of
arbitrary dimension.

10. Assembly map and stratified homotopy invariance of higher signatures

Consider the assembly map β : K∗(BΓ) → K∗(C
∗
rΓ). The rationally injectivity of this

map is known as the strong Novikov conjecture for Γ. In the closed case it implies that the
Novikov higher signatures are oriented homotopy invariants. The rational injectivity of the
assembly map is still unsettled in general, although it is known to hold for large classes of
discrete groups; for closed manifolds having these fundamental groups the higher signatures
are thus homotopy invariants. The following is the main topological result of this paper:
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T 10.1. – Let “X be an oriented Witt space, r : “X → Bπ1(“X) the classifying
map for the universal cover, and let Γ := π1(“X). If the assembly map K∗(BΓ)→ K∗(C

∗
rΓ) is

rationally injective, then the Witt-Novikov higher signatures

{〈α, r∗L∗(“X)〉, α ∈ H∗(BΓ,Q)}

are stratified homotopy invariants.

Proof. – The proof proceeds in four steps and is directly inspired by Kasparov’s proof in
the closed case, see for example [30] and the references therein:

1. Consider (“X ′, r′ : “X ′ → BΓ) and (“X, r : “X → BΓ), with r = r′ ◦ f and f : “X → “X ′
a stratified homotopy equivalence between (smoothly stratified) oriented Witt spaces.
Denote by ð̃′sign the twisted signature operator associated to (“X ′, r′ : “X ′ → BΓ). We
have proved that

Ind(ð̃sign) = Ind(ð̃′sign) in K∗(C
∗
rΓ)⊗Q .

2. We know that the assembly map sends r∗[ðsign] ∈ K∗(BΓ) to the Witt index class
Ind(ð̃sign). More explicitly:

β(r∗[ðsign]) = Ind(ð̃sign) in K∗(C
∗
rΓ)⊗Q.

3. We deduce from the assumed rational injectivity of the assembly map that

r∗[ðsign] = (r′)∗[ð′sign] in K∗(BΓ)⊗Q.

4. Since we know from Cheeger/Moscovici-Wu that Ch∗(r∗[ðsign]) = r∗(L∗(“X))

in H∗(BΓ,Q) we finally get that

r∗(L∗(“X)) = (r′)∗(L∗(“X ′)) in H∗(BΓ,Q)

which obviously implies the stratified homotopy invariance of the higher signatures
{< α, r∗L∗(“X) >,α ∈ H∗(BΓ,Q)}.

Examples of discrete groups for which the assembly map is rational injective include:
amenable groups, discrete subgroups of Lie groups with a finite number of connected
components, Gromov hyperbolic groups, discrete groups acting properly on bolic spaces,
countable subgroups of GL(K) for K a field.

11. The symmetric signature on Witt spaces

11.1. The symmetric signature in the closed case

LetX be a closed orientable manifold and let r : X → BΓ be a classifying map for the uni-
versal cover. The symmetric signature of Mishchenko, σ(X, r), is a purely topological object
[46]. In its most sophisticated presentation, it is an element in the L-theory groups L∗(ZΓ).
In general one can define the symmetric signature of any algebraic Poincaré complex, i.e., a
cochain complex of finitely generated ZΓ-modules satisfying a kind of Poincaré duality. The
Mishchenko symmetric signature corresponds to the choice of the Poincaré complex defined
by the cochains on the universal cover. In the treatment of the Novikov conjecture one is
in fact interested in a less sophisticated invariant, namely the image of σ(X, r) ∈ L∗(ZΓ)
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under the natural map βZ : L∗(ZΓ) → L∗(C∗rΓ). Recall also that there is a natural isomor-
phism ν : L∗(C∗rΓ) → K∗(C

∗
rΓ) (which is in fact valid for any C∗-algebra). The C∗-alge-

braic symmetric signature is, by definition, the element σ
C∗rΓ

(X, r) := ν(βZ(σ(X, r)); thus
σ
C∗rΓ

(X, r) ∈ K∗(C∗rΓ). The following result, due to Mishchenko and Kasparov, generalizes
the equality between the numeric index of the signature operator and the topological signa-
ture. With the usual notation:

(11.1) Ind(ð̃sign) = σ
C∗rΓ

(X, r) ∈ K∗(C∗rΓ).

As a corollary we see that the signature index class is a homotopy invariant; this is the topo-
logical approach to the homotopy invariance of the signature index class that we have men-
tioned in the introductory remarks in Section 9. The equality of the C∗-algebraic symmetric
signature with the signature index class (formula (11.1) above) can be restated as saying that
the following diagram is commutative

(11.2)

ΩSO
∗ (BΓ)

Index−−−−→ Ki(C
∗
rΓ)yσ ν−1

y
L∗(ZΓ)

βZ−−−−→ L∗(C∗rΓ)

where i ≡ ∗ mod 2.

11.2. The symmetric signature on Witt spaces

The middle perversity intersection homology groups of a Witt space do satisfy Poincaré
duality over the rationals. Thus, it is natural to expect that for a Witt space “X endowed
with a reference map r : “X → BΓ it should be possible to define a symmetric signature
σWitt

QΓ (X, r) ∈ L∗(QΓ). And indeed, the definition of symmetric signature in the Witt con-
text, together with its expected properties, such as Witt bordism invariance, does appear in
the literature, see for example [60], [10], [61]. However, no rigorous account of this definition
was given in these references, which is unfortunate, given that things are certainly more
complicated than in the smooth case and for diverse reasons that for the sake of brevity we
shall not go into.

Fortunately, in a recent paper Markus Banagl [5] has given a rigorous definition of the
symmetric signature on Witt spaces(4) using surgery techniques as well as previous results of
Eppelmann [15]. Banagl’s symmetric signature is an element σWitt

QΓ (“X, r) ∈ L∗(QΓ); we refer
directly to Banagl’s interesting article for the definition and only point out that directly from
his construction we can conclude that

– the symmetric signature σWitt
QΓ (“X, r) is equal to (the rational) Mishchenko’s symmetric

signature if “X is a closed compact manifold;
– the Witt symmetric signature is a Witt bordism invariant; it defines a group homomor-

phism σWitt
QΓ : ΩWitt

∗ (BΓ)→ L∗(QΓ).

(4) Banagl actually concentrates on the more restrictive class of IP spaces, for which an integral symmetric signature,
i.e. an element in L∗(ZΓ), exists; it is easy to realize that his construction can be given for the larger class of Witt
spaces, producing, however, an element in L∗(QΓ).
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On the other hand, it is not known whether Banagl’s symmetric signature σWitt
QΓ (“X, r) is

a stratified homotopy invariant.
We define the C∗-algebraic Witt symmetric signature as the image of σWitt

QΓ (“X, r) under
the composite

L∗(QΓ)
βQ−→ L∗(C∗rΓ)

ν−→ K∗(C
∗
rΓ) .

We denote the C∗-algebraic Witt symmetric signature by σWitt
C∗rΓ

(X, r).

11.3. Rational equality of the Witt symmetric signature and of the signature index class

Our most general goal would be to prove that there is a commutative diagram

(11.3)

ΩWitt
∗ (BΓ)

Index−−−−→ Ki(C
∗
rΓ)yσWitt

QΓ ν−1

y
L∗(QΓ)

βQ−−−−→ L∗(C∗rΓ)

or, in formulæ
σWitt
C∗rΓ

(X, r) = Ind(ð̃sign) in Ki(C
∗
rΓ)

with Ind(ð̃sign) the signature index class described in the previous sections. We shall be happy
with a little less, namely the rational equality.

P 11.1. – Let σWitt
C∗rΓ (X, r)Q and Ind(ð̃sign)Q be the rational classes, in the

rationalized K-groupKi(C
∗
rΓ)⊗Q, defined by the Witt symmetric signature and by the signature

index class. Then

(11.4) σWitt
C∗rΓ (X, r)Q = Ind(ð̃sign)Q in Ki(C

∗
rΓ)⊗Q.

Proof. – We already know from [5] that the rationalized symmetric signature defines a
homomorphism from (ΩWitt

∗ (BΓ))Q to Ki(C
∗
rΓ) ⊗ Q. However, it also clearly defines a

homomorphism (ΩWitt,s
∗ (BΓ))Q → Ki(C

∗
rΓ) ⊗ Q, exactly as the signature index class. For

notational convenience, let I : (ΩWitt,s
∗ (BΓ))Q → Ki(C

∗
rΓ) ⊗ Q be the (Witt) signature

index morphism; let I ′ : (ΩWitt,s
∗ (BΓ))Q → Ki(C

∗
rΓ)⊗Q be the (Witt) symmetric signature

morphism. We want to show that
I = I ′ .

We know from Proposition 7.3 that the natural map ΩSO
∗ (BΓ) → ΩWitt,s

∗ (BΓ) induces a
rational surjection

s : (ΩSO
∗ (BΓ))Q → (ΩWitt,s

∗ (BΓ))Q.

In other words, a smoothly stratified Witt space X with reference map r : X → BΓ is
smoothly stratified Witt bordant to k-copies of a closed oriented compact manifold M with
reference map ρ : M → BΓ. Moreover, we remark that the Witt index classes and the
Witt symmetric signature of an oriented closed compact manifold coincide with the classic
signature index class and the Mishchenko symmetric signature. Then

I ([X, r]) = I (k[M,ρ]) = I ′(k[M,ρ]) = I ′([X, r])

with the first and third equality following from the above remark and the second equality
obtained using the fundamental result of Kasparov and Mishchenko on closed manifolds.
The proof is complete.
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The above proposition together with Proposition 9.3 implies at once the following result:

C 11.2. – TheC∗-algebraic symmetric signature defined by Banagl is a rational
stratified homotopy invariant.

This corollary does not seem to be obvious from a purely topological point of view. We add
that very recently Friedman and McClure have given an alternative definition of symmetric
signature on Witt spaces; while its relationship with Banagl’s definition is for the time being
unclear, we point out that the symmetric signature of Friedman and McClure is a stratified
homotopy invariant; moreover, with the same proof given above, its image in K∗(C∗rΓ) is
rationally equal to our signature index class.

12. Epilogue

Let “X be an orientable Witt pseudomanifold with fundamental group Γ. We endow the
regular part of “X with an adapted iterated edge metric g (Proposition 5.4). Let “X ′ be a Galois
Γ-covering and r : “X → BΓ a classifying map for “X ′. We now restate once more the signature
package for the pair (“X, r : “X → BΓ) indicating precisely where the individual items have
been established in this paper.

(1) The signature operator defined by the edge (adapted) iterated metric g with values in
the Mishchenko bundle r∗EΓ×Γ C

∗
rΓ defines a signature index class

Ind(ð̃sign) ∈ K∗(C∗rΓ), ∗ ≡ dimX mod 2. Established in Theorem 6.6.
(2) The signature index class is a (smooth) Witt bordism invariant; more precisely it defines

a group homomorphism ΩWitt,s
∗ (BΓ)→ K∗(C

∗
rΓ)⊗Q. This is Theorem 7.1, together

with (7.2).
(3) The signature index class is a stratified homotopy invariant. Proposition 9.3.
(4) There is a K-homology signature class [ðsign] ∈ K∗(X) whose Chern character is,

rationally, the homology L-Class of Goresky-MacPherson. Theorem 6.2 and Theorem
8.1.

(5) The assembly map β : K∗(BΓ) → K∗(C
∗
rΓ) sends the class r∗[ðsign] into Ind(ð̃sign).

Corollary 6.7.
(6) If the assembly map is rationally injective one can deduce from the above results the

homotopy invariance of the Witt-Novikov higher signatures. Theorem 10.1.
(7) There is a topologically defined C∗-algebraic symmetric signature σWitt

C∗rΓ (X, r) ∈ K∗(C∗rΓ)

which is equal to the analytic index class Ind(ð̃sign) rationally. This is Banagl’s con-
struction together with our Proposition 11.1.
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